Skip to main content
Log in

MP2 study on the hydrogen-bonding interaction between 5-fluorouracil and DNA bases: A,C,G,T

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The 5-fluorouracil is a pyrimidine analog effective in the treatment of cancer. In this work, we present the hydrogen-bonding base pairs involving 5-FU bound to the four bases in DNA: adenine, cytosine, guanine, and thymine. Full geometry optimizations have been performed for the studied complexes by MP2 method. The interaction energies were corrected for the basis-set superposition error, using the full Boys-Bernardi counterpoise correction scheme. Hydrogen-bonding patterns of these base pairs were characterized using NBO analysis and AIM analysis. According to the calculated binding energies and structural parameters, the stability of the base pairs decrease in the following order: 5-FU:A > 5-FU:G > 5-FU:T > 5-FU:C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Watson JD, Crick FHC (1953) Nature 171:737–738. doi:10.1038/171738a0

    Article  CAS  Google Scholar 

  2. Parthasarathi R, Subramanian V (2006) Chem Phys Lett 418:530–534. doi:10.1016/j.cplett.2005.10.153

    Article  CAS  Google Scholar 

  3. Dkhissi A, Blossey R (2007) Chem Phys Lett 439:35–39. doi:10.1016/j.cplett.03.065

    Article  CAS  Google Scholar 

  4. Thiviyanathan V, Somasunderam A, Volk DE, Hazra TK, Mitra S, Gorenstein DG (2008) Biochem Biophys Res Commun 366:752–757. doi:10.1016/j.bbrc.2007.12.010

    Article  CAS  Google Scholar 

  5. Padermshoke A, Katsumoto Y, Masaki R, Aida M (2008) Chem Phys Lett 457:232–236. doi:10.1016/j.cplett.2008.04.029

    Article  CAS  Google Scholar 

  6. Qiu ZM, Wang HJ, Xia YM (2010) Struct Chem 21:931–937. doi:10.1007/s11224-010-9629-3

    Article  CAS  Google Scholar 

  7. Villani G (2006) Chem Phys 324:438–446. doi:10.1016/j.chemphys.2005.11.006

    Article  CAS  Google Scholar 

  8. Grunenberg J (2004) J Am Chem Soc 126:16310–16311. doi:10.1021/ja046282a

    Article  CAS  Google Scholar 

  9. Bhattacharyya D, Koripella SC, Mitra A, Rajendran VB, Sinha B (2007) J Biosci 32:809–825. doi:10.1007/s12038-007-0082-4

    Article  CAS  Google Scholar 

  10. Qiu ZM, Xia YM, Wang HJ, Diao KS (2010) Struct Chem 21:99–105. doi:10.1007/s11224-009-9528-7

    Article  CAS  Google Scholar 

  11. Šponer J, Leszczynski J, Hobza P (2001) Biopolymers 61(1):3–31. doi:10.1002/1097-0282

    Article  Google Scholar 

  12. Brovarets’ OO, Hovorun DM (2014) J Biomol Struct Dyn 32(1):127–154. doi:10.1080/07391102.2012.755795

    Article  Google Scholar 

  13. Brovarets’ OO, Yurenko YP, Hovorun DM (2013) J Biomol Struct Dyn 32:993–1022. doi:10.1080/07391102.2013.799439

    Article  Google Scholar 

  14. Brovarets’ OO, Hovorun DM (2013) J Biomol Struct Dyn 31(8):913–936. doi:10.1080/07391102.2012.715041

    Article  Google Scholar 

  15. Šponer J, Leszczynski J, Hobza P (1996) J Biomol Struct Dyn 14(1):117–135

    Article  Google Scholar 

  16. Noorduis P, Holwerda U, van der Wilt CL, Van Croeningen CJ, Smid K, Meijer S, Pinedo HM, Peters GJ (2004) Ann Oncol 15(7):1025–1032. doi:10.1093/annonc/mdh264

    Article  Google Scholar 

  17. Yoshiok A, Tanak S, Hiraok O, Koyam Y, Hirot Y, Ayusawa D, Seno T, Garrett C, Wataya Y (1987) J Biol Chem 262:8235–8241

    Google Scholar 

  18. Coll M, Saal D, Frederick CA, Aymami J, Rich A, Wang AHJ (1989) Nucl Acids Res 17(3):911–923. doi:10.1093/nar/17.3.911

    Article  CAS  Google Scholar 

  19. Sowers LC, Eritja R, Kaplan B, Goodman MF, Fazakerly GV (1988) J Biol Chem 263:14794–14801

    CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., Wallingford CT

  21. Hobza P, Zahradnik R (1988) Intermolecular complexes. Elsevier, Amsterdam

    Google Scholar 

  22. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van van Lenthe JH (1994) Chem Rev 94:1873–1885. doi:10.1021/cr00031a007

    Article  Google Scholar 

  23. Alkorta I, Rozas I, Elguero J (1998) Struct Chem 9:243–247. doi:10.1023/A:1022424228462

    Article  CAS  Google Scholar 

  24. Bader RFW (1991) Chem Rev 91:893–928. doi:10.1021/cr00005a013

    Article  CAS  Google Scholar 

  25. Iogansen V (1999) Spectrochim Acta, Part A 55:1585–1612. doi:10.1016/S1386-1425(98)00348-5

    Article  Google Scholar 

  26. Brovarets’ OO, Hovorun DM (2013) Adasdfsadf. Phys Chem Chem Phys 15:20091–20104. doi:10.1039/c3cp52644e

    Article  Google Scholar 

  27. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170–173. doi:10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  28. Reynisson J, Steenken S (2002) Phys Chem Chem Phys 4:5353–5358. doi:10.1039/b206342e

    Article  CAS  Google Scholar 

  29. Sharma P, Mitra A, Sharma S, Singh H (2007) J Chem Sci 119:525–531. doi:10.1007/s12039-007-0066-9

    Article  CAS  Google Scholar 

  30. Wärmländer S, Sponer JE, Sponer J, Leijon M (2002) J Biol Chem 277:28491–28497. doi:10.1074/jbc.M202989200

    Article  Google Scholar 

  31. Kawahara SI, Uchimaru T, Sekine M (2000) J Mol Struct 530:109–117. doi:10.1016/S0166-1280(00)00329-8

    Article  CAS  Google Scholar 

  32. Guerra CF, Bickelhaupt FM, Snijders JG, Baerends EJ (1999) Chem Eur J 5:3581–3595

    Article  CAS  Google Scholar 

  33. Šponer J, Leszczynski J, Hobza P (1996) J Phys Chem 100:1965–1974. doi:10.1021/jp952760f

    Article  Google Scholar 

  34. Leszczynski J (1992) Int J Quantum Chem 44:43–55. doi:10.1002/qua.560440708

    Article  Google Scholar 

  35. Gorb L, Podolyan Y, Dziekonski P, Sokalski WA, Leszczynski J (2004) J Am Chem Soc 126:10119–10129. doi:10.1021/ja049155n

    Article  CAS  Google Scholar 

  36. Rosenberg JM, Seeman NC, Day RO, Rich A (1976) J Mol Biol 104:145–167. doi:10.1016/0022-2836(76)90006-1

    Article  CAS  Google Scholar 

  37. Brovarets’ OO, Hovorun DM (2013) J Comput Chem 34:2577–2590. doi:10.1002/jcc.23412

    Article  Google Scholar 

  38. Carethers JM, Chauhan DP, Fink D, Nebel S, Bresalier RS, Howell SB, Boland CR (1999) Gastroenterology 117:123–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Science and Technology Development Project of Pingdingshan (2012064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai Ming Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Z.M., Wang, G.L., Wang, H.L. et al. MP2 study on the hydrogen-bonding interaction between 5-fluorouracil and DNA bases: A,C,G,T. Struct Chem 25, 1465–1474 (2014). https://doi.org/10.1007/s11224-014-0427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0427-1

Keywords

Navigation