Skip to main content
Log in

Exploring heterocyclic cations ability to form the iodide–iodine halogen bond: case study of chalcogenazolo(ino)quinolinium crystals

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Analysis of iodine-derived chalcogenazolo(ino)quinolinium mono- and triiodides shows that the covalently bonded iodine atoms in the fragments C(sp2)–I and C(sp3)–I differ significantly in iodide–iodine halogen bonding ability. The local and integrated characteristics of kinetic, potential, and total electronic energy for C–I covalent bond have been examined. It has been found that both delocalization indices of iodine covalent bond and the total electronic energy density integrated over carbon–iodine interatomic surface can be used as quantitative criteria of iodine-derived cation ability to form the halogen bond with triiodide anion in crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Batalov VI, Dikhtiarenko A, Yushina ID, Bartashevich EV, Kim DG, García-Granda S (2014) Crystal structure of (E)-3-(1-iodoethylidene)-2,3-dihydro-[1,4]thiazino-[2,3,4-ij]quinolin-4-ium triiodide, C13H11I4NS. Zeitschrift für Kristallographie New Cryst Struct 229:195–196

    CAS  Google Scholar 

  2. Batalov VI, Kim DG, Dikhtiarenko A, Zakariae A, Bartashevich EV, García-Granda S (2014) Crystal structure of (E)-3-(iodomethylene)-2,3-dihydro-[1,4]oxazino-[2,3,4-ij]quinolin-4-ium triodide–iodine (2:1), [C12H9INO]I-3 center dot 0.5I(2), C12H9I5NO. Zeitschrift für Kristallographie New Cryst Struct 229:211–212

    CAS  Google Scholar 

  3. Batalov VI, Dikhtiarenko A, Yushina ID, Bartashevich EV, Kim DG, García-Granda S (2014) Crystal structure of 8,10-diiodo-3-(iodomethyl)-2,3-dihydro-[1,4]oxazino-[2,3,4-ij]quinolin-4-ium triiodide, [C12H9I3NO]center dot I-3, C12H9I6NO. Zeitschrift für Kristallographie New Cryst Struct 229:213–214

    CAS  Google Scholar 

  4. Batalov VI, Kim DG, Slepukhin PA (2013) Heterocyclization of 8-(2-methyl-prop-2-enylsulfanyl)quinoline using electrophilic reagents. Chem Heterocycl Compd 49:1092–1096. doi:10.1007/s10593-013-1348-4

    Article  CAS  Google Scholar 

  5. Kim DG (2008) Synthesis and halocyclization of 2-alkenylthioquinolines. Chem Heterocycl Compd 44:1355–1358

    Article  CAS  Google Scholar 

  6. Bartashevich EV, Yushina ID, Vershinina EA, Slepukhin PA, Kim DG (2014) Complex structure tri- and polyiodides of iodocyclization products of 2-allylthioquinoline. J Struct Chem 55:112–119

    Article  CAS  Google Scholar 

  7. Kim DG, Vershinina EA (2014) Synthesis and properties of thiazolo- and oxazolo[3,2-a]quinolinium systems and their hydrogenated derivatives (review). Chem Heterocycl Compd 50:911–931

    Article  CAS  Google Scholar 

  8. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer PA, Resnati G, Rissanen K (2013) Definition of the halogen bond. Pure Appl Chem 85:1711–1713

    Article  CAS  Google Scholar 

  9. Bartashevich EV, Yushina ID, Stash AI, Tsirelson VG (2014) Halogen bonding and other iodine interactions in crystals of dihydrothiazolo(oxazino)quinolinium oligoiodides from the electron-density viewpoint. Cryst Growth Des 14:5674–5684

    Article  CAS  Google Scholar 

  10. Kilah NL, Wise MD, Beer PD (2011) Crystallographic implications for the design of halogen bonding anion receptors. Cryst Growth Des 11:4565–4571

    Article  CAS  Google Scholar 

  11. Raatikainen K, Cavallo G, Metrangolo P, Resnati G, Rissanen K, Terraneo G (2013) In the pursuit of efficient anion-binding organic ligands based on halogen bonding. Cryst Growth Des 13:871–877

    Article  CAS  Google Scholar 

  12. Tepper R, Schulze B, Jäger M, Friebe C, Scharf DH, Görls H, Schubert US (2015) Anion receptors based on halogen bonding with halo-1,2,3-triazoliums. J Org Chem. Article ASAP doi:10.1021/acs.joc.5b00028

  13. Zapata F, Caballero A, Molina P, Alkorta I, Elguero J (2014) Open bis(triazolium) structural motifs as a benchmark to study combined hydrogen- and halogen-bonding interactions in oxoanion recognition processes. J Org Chem 79:6959–6969

    Article  CAS  Google Scholar 

  14. Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388

    Article  Google Scholar 

  15. Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68(3):441–451

    Article  CAS  Google Scholar 

  16. Sakurai T, Sundaralingam M, Jeffrey GA (1963) A nuclear quadrupole resonance and X-ray study of the crystal structure of 2,5-dichloroaniline. Acta Crystallogr 16(5):354–363

    Article  CAS  Google Scholar 

  17. Desiraju GR (1991) Crystal engineering: the design of organic solids. J Appl Cryst 24:265

    Google Scholar 

  18. Jentzsch AV, Matile S (2013) Transmembrane halogen-bonding cascades. J Am Chem Soc 135(14):5302–5303

    Article  Google Scholar 

  19. Tsirelson VG, Zou P-F, Tang T-H, Bader RFW (1995) Topological definition of crystal structure: determination of the bonded interactions in solid molecular chlorine. Acta Crystallogr A 51:143–153

    Article  Google Scholar 

  20. Bertolotti F, Shishkina AV, Forni A, Gervasio G, Stash AI, Tsirelson VG (2014) The intermolecular bonding features in solid iodine. Cryst Growth Des 14:3587–3595

    Article  CAS  Google Scholar 

  21. Bartashevich EV, Tsirelson VG (2014) Interplay between non-covalent interactions in complexes and crystals with halogen bonds. Russ Chem Rev 83(12):1181–1203

    Article  CAS  Google Scholar 

  22. Shields Z, Murray JS, Politzer P (2010) Directional tendencies of halogen and hydrogen bonds. Int J Quantum Chem 110(15):2823–2832

    Article  CAS  Google Scholar 

  23. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  24. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: lex parsimoniae (Occam’s Razor). Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  25. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291. doi:10.1007/s00894-006-0130-2

    Article  CAS  Google Scholar 

  26. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  27. Bankiewicz B, Palusiak M (2013) The shape of the halogen atom—anisotropy of electron distribution and its dependence on basis set and method used. Struct Chem 24:1297–1306

    Article  CAS  Google Scholar 

  28. Nyburg SC, Faerman CH (1985) A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon. Acta Crystallogr B 41:274–279

    Article  Google Scholar 

  29. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  30. Tsirelson VG (2014) Quantum chemistry. Molecules, molecular systems and solids, 3rd edn. Binom Publ, Moscow

    Google Scholar 

  31. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH Verlag GmbH & Co, KGaA

    Book  Google Scholar 

  32. Cremer D, Kraka E (1984) A description of the chemical bond in terms of local properties of electron density and energy. Croat Chem Acta 57:1259–1281

    Google Scholar 

  33. Bader RFW, Beddall PM (1972) Virial field relationship for molecular charge distributions and the spatial partioning of molecular properties. J Chem Phys 56:3320–3329

    Article  CAS  Google Scholar 

  34. Bader RFW (2009) Confined atoms treated as open quantum systems in advances in quantum chemistry. Adv Quantum Chem 57:285–318

    Article  CAS  Google Scholar 

  35. Bader RFW, Austen MA (1997) Properties of atoms in molecules: atoms under pressure. J Chem Phys 107:4271–4285

    Article  CAS  Google Scholar 

  36. Bader RFW (2000) Atomic force microscope as an open system and the Ehrenfest force. Phys Rev B 61:7795

    Article  CAS  Google Scholar 

  37. Bader RFW, Tang TH, Tal Y, Bieglier-Konig FW (1982) Molecular structure and its change: hydrocarbons. J Am Chem Soc 104(4):940–945

    Article  CAS  Google Scholar 

  38. Exner K, PvR Schleyer (2001) Theoretical bond energies—a critical evaluation. J Phys Chem A 105:3407–3417

    Article  CAS  Google Scholar 

  39. Howard ST (2003) An atoms-in-molecules model of bond energy distributions in polyatomic molecules. Phys Chem Chem Phys 5(15):3113–3119

    Article  CAS  Google Scholar 

  40. Platts JA (2005) Properties of interatomic surfaces: Relation to bond energies. Phys Chem Chem Phys 7:3805–3810

    Article  CAS  Google Scholar 

  41. Bader RFW, Stephens ME (1975) Spatial localization of the electronic pair and number distributions in molecules. J Am Chem Soc 97(26):7391–7399

    Article  CAS  Google Scholar 

  42. Fradera X, Austen MA, Bader RFW (1999) The Lewis model and beyond. J Phys Chem A 103:304–314

    Article  CAS  Google Scholar 

  43. Wang Y-G, Werstiuk NH (2003) A practical and efficient method to calculate AIM localization and delocalization indices at post-HF levels of theory. J Comput Chem 24(3):379–385

    Article  Google Scholar 

  44. Keith TA (2013) AIMALL, Version 13.10.19. Professional. http://aim.tkgristmill.com

  45. Granovsky AA. Firefly version 8. http://classic.chem.msu.su/gran/firefly/index.html

  46. Dunitz JD, Gehrer H, Britton D (1972) The crystal structure of diiodacetylene: an example of pseudosymmetry. Acta Cryst B 28:1989–1994

    Article  CAS  Google Scholar 

  47. Angelina EL, Duarte DJR, Peruchena NM (2013) Is the decrease of the total electron energy density a covalence indicator in hydrogen and halogen bonds? J Mol Mod 19(5):2097–2106

    Article  CAS  Google Scholar 

  48. Stevens WJ, Fink WH (1987) Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer. Chem Phys Lett 139:15–22

    Article  CAS  Google Scholar 

  49. Slepukhin PA, Personal communications

Download references

Acknowledgments

We thank Dr. P.A. Slepukhin for X-ray diffraction structural analysis of 1-iodomethyl-1,2-dihydro [1, 3] thiazolo[3,2-a]quinolinium monoiodide (CCDC 1055418) which was crystallized by E.A. Vershinina. This work was supported by the Russian Foundation for Basic Research, Grant 13-03-00767a and Grant 14-03-00961.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bartashevich.

Additional information

This paper is dedicated to the memory of Professor Oleg Shishkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartashevich, E.V., Nasibullina, S.E., Bol’shakov, O.I. et al. Exploring heterocyclic cations ability to form the iodide–iodine halogen bond: case study of chalcogenazolo(ino)quinolinium crystals. Struct Chem 27, 305–313 (2016). https://doi.org/10.1007/s11224-015-0714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0714-5

Keywords

Navigation