Skip to main content
Log in

Theoretical studies on stability and pyrolysis mechanism of salts formed by N5 and metallic cations Na+, Fe2+ and Ni2+

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The salts formed by N5 and metallic cations (Na+, Fe2+ and Ni2+) may be potential candidates for superior energetic materials and were studied with the density functional theory B3LYP method and ab initio molecular orbital theory MP2 method using the 6-31G* and LanL2DZ basis sets. Thermal dissociations of these salts are initiated by breaking of the N5 ring, and those of Fe(N5)2 and Ni(N5)2 proceed sequentially through two transition states. In gas phase, the activation barriers (E as, in kJ/mol) of thermal dissociations decrease in the order of N5  > NaN5 > HN5 > Ni(N5)2 > Fe(N5)2. Products of initial pyrolysis of these salts are N2 and metallic azide. The frontier orbital energy gaps (in eV) are N5 (8.27) > HN5 (7.40) > NaN5 (5.10) > Fe(N5)2 (4.92) > Ni(N5)2 (3.43). The more stable salt has the smaller electron transfer between the cation and anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Talawar M, Sivabalan R, Asthana S, Singh H (2005) Novel ultrahigh-energy materials. Combust Explos Shock Waves 41(3):264–277

    Article  Google Scholar 

  2. Fau S, Wilson KJ, Bartlett RJ (2002) On the stability of N5 + N5 . J Phys Chem A 106(18):4639–4644

    Article  CAS  Google Scholar 

  3. Fau S, Bartlett RJ (2001) Possible products of the end-on addition of N3 to N5 + and their stability. J Phys Chem A 105(16):4096–4106

    Article  CAS  Google Scholar 

  4. Wang LJ, Xu WG, Li QS (2000) Stability of N8 isomers and isomerization reaction of N8(C2v) to N8(Cs). J Mol Struct Theochem 531(1):135–141

    Article  CAS  Google Scholar 

  5. Nguyen MT, Ha TK (1996) Azidopentazole is probably the lowest-energy N8 species—a theoretical study. Eur J Inorg Chem 129(10):1157–1159

    CAS  Google Scholar 

  6. Huheey JE, Keiter EA, Keiter RL, Medhi OK (2006) Inorganic chemistry: principles of structure and reactivity. Pearson Education India

  7. Liu YD, Zhao JF, Li QS (2002) Structures and stability of N7 + and N7 clusters. Theor Chem Acc 107(3):140–146

    Article  CAS  Google Scholar 

  8. Tobita M, Bartlett RJ (2001) Structure and stability of N6 isomers and their spectroscopic characteristics. J Phys Chem A 105(16):4107–4113

    Article  CAS  Google Scholar 

  9. Li QS, Wang LJ, Xu WG (2000) Structures and stability of N9, N9 and N9 + clusters. Theor Chem Acc 104(1):67–77

    Article  CAS  Google Scholar 

  10. Klapötke TM, Piercey DG (2011) 1,1′-Azobis (tetrazole): a highly energetic nitrogen-rich compound with a N10 chain. Inorg Chem 50(7):2732–2734

    Article  Google Scholar 

  11. Cacace F (2002) From N2 and O2 to N4 and O4: pneumatic chemistry in the 21st century. Chem-Eur J 8(17):3838–3847

    Article  CAS  Google Scholar 

  12. Ruchti T, Speck T, Connelly J, Bieske E, Linnartz H, Maier J (1996) Rotationally resolved infrared absorption spectrum of N4 +. J Chem Phys 105(7):2591–2594

    Article  CAS  Google Scholar 

  13. Christe KO, Haiges R, Boatz JA, Brooke Jenkins HD, Garner EB, Dixon DA (2011) Why are [P (C6H5)4]+ N3 and [As (C6H5) 4]+ N3 ionic salts and Sb (C6H5)4N3 and Bi (C6H5)4N3 covalent solids? A theoretical study provides an unexpected answer. Inorg Chem 50(8):3752–3756

    Article  CAS  Google Scholar 

  14. Portius P, Fowler P, Adams H, Todorova T (2008) Experimental and theoretical characterization of the hexaazidophosphate (V) ion. Inorg Chem 47(24):12004–12009

    Article  CAS  Google Scholar 

  15. Romanova J, Petrova J, Ivanova A, Tadjer A, Gospodinova N (2010) Theoretical study on the emeraldine salt—impact of the computational protocol. J Mol Struct Theochem 954(1):36–44

    Article  CAS  Google Scholar 

  16. Schulz A, Villinger A (2012) Binary pnictogen azides—an experimental and theoretical study: [As(N3)4], [Sb(N3)4], and [Bi(N3)5(dmso)]2−. Chem-Eur J 18(10):2902–2911

    Article  CAS  Google Scholar 

  17. Haiges R, Rahm M, Christe KO (2012) Unprecedented conformational variability in main group inorganic chemistry: the tetraazidoarsenite and antimonite salts A+ [M(N3)4](A = NMe4, PPh4,(Ph3P)2N; M = As, Sb), five similar salts, five different anion structures. Inorg Chem 52(1):402–414

    Article  Google Scholar 

  18. Dixon DA, Feller D, Christe KO, Wilson WW, Vij A, Vij V, Jenkins HDB, Olson RM, Gordon MS (2004) Enthalpies of formation of gas-phase N3, N3 , N5 +, and N5 from Ab initio molecular orbital theory, stability predictions for N5 + N3 and N5 + N5 , and experimental evidence for the instability of N5 + N3 . J Am Chem Soc 126(3):834–843

    Article  CAS  Google Scholar 

  19. Gagliardi L, Orlandi G, Evangelisti S, Roos BO (2001) A theoretical study of the nitrogen clusters formed from the ions N3 , N5 +, and N5. J Chem Phys 114(24):10733–10737

    Article  CAS  Google Scholar 

  20. Haiges R, Schneider S, Schroer T, Christe KO (2004) High energy density materials: synthesis and characterization of N5 + [P(N3)6], N5 + [B(N3)4], N5 + [HF2]·n HF, N5 + [BF4], N5 + [PF6], and N5 + [SO3F]. Angew Chem Int Edit 43(37):4919–4924

    Article  CAS  Google Scholar 

  21. Gu F, Dong H, Li Y, Si Z, Yan F (2013) Highly stable N3 substituted imidazolium-based alkaline anion exchange membranes: experimental studies and theoretical calculations. Macromolecules 47(1):208–216

    Article  Google Scholar 

  22. Glukhovtsev MN, Jiao H, Schleyer PvR (1996) Besides N2, what is the most stable molecule composed only of nitrogen atoms? Inorg Chem 35(24):7124–7133

    Article  CAS  Google Scholar 

  23. Glukhovtsev MN, Schleyer PvR, Maerker C (1993) Pentaaza- and pentaphosphacyclopentadienide anions and their lithium and sodium derivatives: structures and stabilities. J Phys Chem 97(31):8200–8206

    Article  CAS  Google Scholar 

  24. Ferris KF, Bartlett RJ (1992) Hydrogen pentazole: does it exist? J Am Chem Soc 114(21):8302–8303

    Article  CAS  Google Scholar 

  25. Östmark H, Wallin S, Brinck T, Carlqvist P, Claridge R, Hedlund E, Yudina L (2003) Detection of pentazolate anion (cyclo-N5 ) from laser ionization and decomposition of solid p-dimethylaminophenylpentazole. Chem Phys Lett 379(5):539–546

    Article  Google Scholar 

  26. Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO (2002) Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5 . Angew Chem 114(16):3177–3180

    Article  Google Scholar 

  27. Chen C (2000) Theoretical study of synthetic reaction of tetrazole and tetrazolate anion. Int J Quantum Chem 80(1):27–37

    Article  CAS  Google Scholar 

  28. Butler RN, Hanniffy JM, Stephens JC, Burke LA (2008) A ceric ammonium nitrate N-dearylation of N-p-anisylazoles applied to pyrazole, triazole, tetrazole, and pentazole rings: release of parent azoles. generation of unstable pentazole, HN5/N5 , in solution. J Org Chem 73(4):1354–1364

    Article  CAS  Google Scholar 

  29. Lein M, Frunzke J, Timoshkin A, Frenking G (2001) Iron bispentazole Fe (η5-N5)2, a theoretically predicted high-energy compound: structure, bonding analysis, metal–ligand bond strength and a comparison with the isoelectronic ferrocene. Chem-Eur J 7(19):4155–4163

    Article  CAS  Google Scholar 

  30. Burke LA, Butler RN, Stephens JC (2001) Theoretical characterization of pentazole anion with metal counter ions. Calculated and experimental 15N shifts of aryldiazonium, -azide and -pentazole systems. J Chem Soc Perkin Trans 2(9):1679–1684

  31. Zhao JF, Li N, Li QS (2003) A kinetic stability study of MN5 (M = Li, Na, K, and Rb). Theor Chem Acc 110(1):10–18

    Article  CAS  Google Scholar 

  32. Gagliardi L, Pyykkö P (2002) η5-N5 –Metal-η7-N7 3−: a new class of compounds. J Phys Chem A 106(18):4690–4694

    Article  CAS  Google Scholar 

  33. Kobrsi I, Zheng W, Knox JE, Heeg MJ, Schlegel HB, Winter CH (2006) Experimental and theoretical study of the coordination of 1,2,4-triazolato, tetrazolato, and pentazolato ligands to the [K (18-crown-6)]+ fragment. Inorg Chem 45(21):8700–8710

    Article  CAS  Google Scholar 

  34. Nguyen MT, McGinn M, Hegarty A, Elguero J (1985) Can the pentazole anion (N5 ) be isolated and/or trapped in metal complexes? Polyhedron 4(10):1721–1726

    Article  CAS  Google Scholar 

  35. Claeyssens F, Ranaghan KE, Manby FR, Harvey JN, Mulholland AJ (2005) Multiple high-level QM/MM reaction paths demonstrate transition-state stabilization in chorismate mutase: correlation of barrier height with transition-state stabilization. Chem Commun 40:5068–5070

    Article  Google Scholar 

  36. Zuend SJ, Jacobsen EN (2009) Mechanism of amido-thiourea catalyzed enantioselective imine hydrocyanation: transition state stabilization via multiple non-covalent interactions. J Am Chem Soc 131(42):15358–15374

    Article  CAS  Google Scholar 

  37. Simón L, Goodman JM (2011) How reliable are DFT transition structures? Comparison of GGA, hybrid-meta-GGA and meta-GGA functionals. Org Biomol Chem 9(3):689–700

    Article  Google Scholar 

  38. Clemente FR, Houk K (2004) Computational evidence for the enamine mechanism of intramolecular aldol reactions catalyzed by proline. Angew Chem 116(43):5890–5892

    Article  Google Scholar 

  39. Ess DH, Jones GO, Houk K (2008) Transition states of strain-promoted metal-free click chemistry: 1,3-dipolar cycloadditions of phenyl azide and cyclooctynes. Org Lett 10(8):1633–1636

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C02. Gaussian, Inc., Wallingford

  41. Glendening E, Badenhoop J, Reed A, Carpenter J, Bohmann J, Morales C, Weinhold F (2001) NBO, version 50. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  42. Rice BM, Pai SV, Hare J (1999) Predicting heats of formation of energetic materials using quantum mechanical calculations. Combust Flame 118(3):445–458

    Article  CAS  Google Scholar 

  43. Politzer P, Lane P, Murray JS (2011) Computational characterization of a potential energetic compound: 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane. Cent Eur J Energy Mater 8(1):39–52

    CAS  Google Scholar 

  44. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  45. Benin V, Kaszynski P, Radziszewski G (2002) Arylpentazoles revisited: experimental and theoretical studies of 4-hydroxyphenylpentazole and 4-oxophenylpentazole anion. J Org Chem 67(4):1354–1358

    Article  CAS  Google Scholar 

  46. Martino E, Aghini-Lombardi F, Mariotti S, Lenziardi M, Baschieri L, Braverman L, Pinchera A (1986) Treatment of amiodarone associated thyrotoxicosis by simultaneous administration of potassium perchlorate and methimazole. J Endocrinol Invest 9(3):201

    Article  CAS  Google Scholar 

  47. Da Silva MA, Monte MJ (1990) The construction, testing and use of a new Knudsen effusion apparatus. Thermochim Acta 171:169–183

    Article  Google Scholar 

  48. Jacobs M, Van Ekeren P, De Kruif C (1983) The vapour pressure and enthalpy of sublimation of ferrocene. J Chem Thermodyn 15(7):619–623

    Article  CAS  Google Scholar 

  49. Canneaux S, Bohr F, Hénon E (2014) KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35:82–93

    Article  CAS  Google Scholar 

  50. Aihara J (1999) Weighted HOMO–LUMO energy separation as an index of kinetic stability for fullerenes. Theor Chem Acc 102(1–6):134–138

    Article  CAS  Google Scholar 

  51. Zhang C (2009) Review of the establishment of nitro group charge method and its applications. J Hazard Mater 161(1):21–28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to the 086 Project for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, J., Lu, M. et al. Theoretical studies on stability and pyrolysis mechanism of salts formed by N5 and metallic cations Na+, Fe2+ and Ni2+ . Struct Chem 26, 785–792 (2015). https://doi.org/10.1007/s11224-014-0536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0536-x

Keywords

Navigation