Skip to main content
Log in

Theoretical studies on the stability of salts formed by 3-substituted 6-nitraminotetrazines with different cations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A series of energetic salts based on the cations NH4 +, NH3OH+, N2H5 + and C(NH2)3 + and the anions of 6-nitraminotetrazine and its 3-substituted derivatives of –NH2, –N3, –ONO2, –NF2 or –NO2 was studied using dispersion-corrected density functional theory (DFT-D). In comparison with salts of unsubstituted 6-nitraminotetrazine, –NH2 substitution strengthens the hydrogen bonding interaction and other intramolecular interactions (such as charge transfer, binding energy, second-order perturbation energy and dispersion energy), –N3 has tiny effects on these interactions, and other groups weaken these interactions, with weakening decreasing in the order –NO2 > –NF2 > –ONO2. The ability of the cations to produce strong intramolecular interactions decreases in the order NH3OH+ > N2H5 + > NH4 + > C(NH2)3 +, which is contrary to the order of the basicity of bases. Stronger intramolecular interactions lead to more stable salts. All substituent groups improved the chemical stability except –ONO2, while cations had no effect on chemical stability. All substituent groups were helpful in improving aromaticity, in the sequence –ONO2 > –NF2 > –NO2 > –N3 > –NH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang Y, Gao H, Twamley B, Shreeve JM (2008) Nitroamino triazoles: nitrogen-rich precursors of stable energetic salts. Eur J Inorg Chem 2008(16):2560–2568

    Article  Google Scholar 

  2. Ji NN, Shi ZQ, Zhao RG, Zheng ZB, Li ZF (2010) Synthesis, crystal structure and quantum chemistry of a novel schiff base N-(2,4-dinitro-phenyl)-N′-(1-phenyl-ethylidene)-hydrazine. Bull Korean Chem Soc 31:881–886

    Article  CAS  Google Scholar 

  3. Klapötke TM, Mayer P, Miró Sabaté C, Welch JM, Wiegand N (2008) Simple, nitrogen-rich, energetic salts of 5-nitrotetrazole. Inorg Chem 47(13):6014–6027

    Article  Google Scholar 

  4. Xue H, Arritt SW, Twamley B, Shreeve JM (2004) Energetic salts from N-aminoazoles. Inorg Chem 43(25):7972–7977

    Article  CAS  Google Scholar 

  5. MacFarlane D, Forsyth S, Golding J, Deacon G (2002) Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chem 4(5):444–448

    Article  CAS  Google Scholar 

  6. Hiskey MA, Goldman N, Stine JR (1998) High-nitrogen energetic materials derived from azotetrazolate. J Energy Mater 16(2–3):119–127

    Article  CAS  Google Scholar 

  7. Singh RP, Verma RD, Meshri DT, Shreeve JM (2006) Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed 45(22):3584–3601

    Article  CAS  Google Scholar 

  8. Venkatachalam S, Santhosh G, Ninan Ninan K (2004) An overview on the synthetic routes and properties of ammonium dinitramide (ADN) and other dinitramide salts. Propell Explos Pyrotechnics 29(3):178–187

    Article  CAS  Google Scholar 

  9. Boldyrev V (2006) Thermal decomposition of ammonium perchlorate. Thermochim Acta 443(1):1–36

    Article  CAS  Google Scholar 

  10. Lu LM, Sun XM, Li JX, Ma YH (2009) Determination of hydarzinium nitroformate content by UV-spectrophotometry. Chin J Explos Propell 32(2):84–86

    CAS  Google Scholar 

  11. Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161(2):589–607

    Article  CAS  Google Scholar 

  12. Cui JH, Han JY, Wang JG, Huang R (2010) Study on the crystal structure and hygroscopicity of ammonium dinitramide. J Chem Eng Data 55(9):3229–3234

    Article  CAS  Google Scholar 

  13. Dendage P, Sarwade D, Asthana S, Singh H (2001) Hydrazinium nitroformate (HNF) and HNF based propellants: a review. J Energy Mater 19(1):41–78

    Article  CAS  Google Scholar 

  14. Chavez DE, Hiskey MA (1999) 1,2,4,5-Tetrazine based energetic materials. J Energy Mater 17:357–377

    Article  CAS  Google Scholar 

  15. Gao H, Wang R, Twamley B, Hiskey MA, Jean’ne MS (2006) 3-Amino-6-nitroamino-tetrazine (ANAT)-based energetic salts. Chem Commun 38:4007–4009

    Article  Google Scholar 

  16. Bottaro JC, Penwell PE, Ross DS, Schmitt RJ (1993) Dinitramide salts and method of making same. US Patent No. 5254324

  17. Williams GK, Brill TB (1995) Thermal decomposition of energetic materials 67. Hydrazinium nitroformate (HNF) rates and pathways under combustionlike conditions. Combust Flame 102(3):418–426

    Article  CAS  Google Scholar 

  18. Liu H, Wang F, Wang GX, Gong XD (2012) Theoretical investigations on structure, density, detonation properties, and sensitivity of the derivatives of PYX. J Comput Chem 33(22):1790–1796

    Article  CAS  Google Scholar 

  19. Wang GX, Gong XD, Liu Y, Du HC, Xu XJ, Xiao HM (2011) Looking for high energy density compounds applicable for propellant among the derivatives of DPO with N3, ONO2, and NNO2 groups. J Comput Chem 32(5):943–952

    Article  Google Scholar 

  20. Zhang XL, Liu Y, Wang F, Gong XD (2014) A theoretical study on the structure, intramolecular interactions, and detonation performance of hydrazinium dinitramide. Chem Asian J 9(1):229–236

    Article  Google Scholar 

  21. Zhang XL, Gong XD (2014) Screening nitrogen-rich bases and oxygen-rich acids for forming highly stable salts by theoretical calculations. Chem Phys Chem 15:2281–2287

  22. Wang F, Du HC, Liu H, Gong XD (2012) Hydrogen-bonding interactions and properties of energetic nitroamino [1,3,5]triazine-based guanidinium salts: DFT-D and QTAIM studies. Chem Asian J 7:2577–2591

    Article  CAS  Google Scholar 

  23. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  24. Glendening E, Badenhoop J, Reed A, Carpenter J, Bohmann J, Morales C, Weinhold F (2001) NBO, Version 50. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  25. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C02. Gaussian, Inc, Wallingford

  27. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285(3):170–173

    Article  CAS  Google Scholar 

  28. Politzer P, Martinez J, Murray JS, Concha MC (2010) An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Mol Phys 108(10):1391–1396

    Article  CAS  Google Scholar 

  29. Jenkins HDB, Tudela D, Glasser L (2002) Lattice potential energy estimation for complex ionic salts from density measurements. Inorg Chem 41(9):2364–2367

    Article  CAS  Google Scholar 

  30. Gao H, Ye C, Piekarski CM, Shreeve JM (2007) Computational characterization of energetic salts. J Phys Chem C 111(28):10718–10731

    Article  CAS  Google Scholar 

  31. Gorelsky SI, Ghosh S, Solomon EI (2006) Mechanism of N2O reduction by the μ4-S tetranuclear CuZ cluster of nitrous oxide reductase. J Am Chem Soc 128(1):278–290

    Article  CAS  Google Scholar 

  32. Klapötke TM, Sabaté CM, Stierstorfer J (2008) Hydrogen-bonding stabilization in energetic perchlorate salts: 5-Amino-1H-tetrazolium perchlorate and its adduct with 5-amino-1H-tetrazole. Z Anorg Allg Chem 634(11):1867–1874

    Article  Google Scholar 

  33. Rozas I, Alkorta I, Elguero J (2000) Behaviour of ylides containing N, O and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  34. Williams R, Jencks W, Westheimer F (2004) pKa data compiled by R Williams. http://research.chem.psu.edu/brpgroup/pKa_compilation.pdf

  35. Hoffmann R (1969) Symmetry requirements for the stabilization of one class of diradicals. J Chem Soc Chem Commun 5:240–241

    Article  Google Scholar 

  36. von Ragué SP, Manoharan M, Wang ZX, Kiran B, Jiao H, Puchta R, van Eikema Hommes NJ (2001) Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity. Org Lett 3(16):2465–2468

    Article  Google Scholar 

  37. Krygowski TM, Cyranski MK (2001) Structural aspects of aromaticity. Chem Rev 101(5):1385–1420

    Article  CAS  Google Scholar 

  38. Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318

    Article  CAS  Google Scholar 

  39. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR (2006) Which NICS aromaticity index for planar π rings is best? Org Lett 8(5):863–866

    Article  CAS  Google Scholar 

  40. Howard S, Krygowski T (1997) Benzenoid hydrocarbon aromaticity in terms of charge density descriptors. Can J Chem 75(9):1174–1181

    Article  CAS  Google Scholar 

  41. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105(10):3842–3888

    Article  CAS  Google Scholar 

  42. Nie C (2000) Calculation of group electronegativity. J Wuhan Univ 46:176–180

    CAS  Google Scholar 

Download references

Acknowledgments

Thanks to the 086 Project for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Gong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 81 kb)

Table S2

(DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, J. & Gong, X. Theoretical studies on the stability of salts formed by 3-substituted 6-nitraminotetrazines with different cations. J Mol Model 20, 2521 (2014). https://doi.org/10.1007/s00894-014-2521-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2521-0

Keywords

Navigation