Skip to main content
Log in

Naphthologs of overcrowded bistricyclic aromatic enes: (E)-bisbenzo[a]fluorenylidene

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 18 September 2014

Abstract

(E)-11H-Bisbenzo[a]fluorenylidene (E-6) was synthesized by Barton’s double extrusion diazo-thione coupling method from 11H-benzo[a]fluoren-11-thione (11) and 11-diazo-11H-benzo[a]fluorene (13). The reaction is probably thermodynamically controlled; in the event that the less stable Z -6 is also formed, it would rapidly undergo Z → E diastereomerization to give E -6. The B3LYP/6-311G(d,p) calculated diastereomerization barrier for Z -6 → E -6 is ΔG 298 = 57.0 kJ/mol (13.6 kcal/mol). The calculated equilibrium constant K eq(E -6 → Z -6) = 92:8 (at 298 K) is indicative of a marked diastereoselectivity of the reaction leading to E -6. The structure of E-6 was established by 1H-NMR and 13C-NMR spectroscopies and by X-ray analysis. PAE E-6 crystallizes in the monoclinic space group C2/c. The unit cell of the crystal structure E -6 contains eight molecules, arranged as four pairs of enantiomers. PAE E -6 adopts a twisted conformation with the pure twist of the central C11=C11′ bond ω = 39°. The dihedral angle ν in E -6 is 60.6°, which is significantly higher than the respective dihedral angle in PAEs Z -6, 2, E -7, Z -7, 14, and 15. The large syn-pyramidalization angles at C11 and C11′ (χ = 12.6° and 14.8°) of E-6 indicates the enhanced strain in the fjord regions of the molecule. The enhanced twist is primarily attributed to the double benzo[a]annelation of the bifluorenylidene moiety at the fjord regions. The B3LYP/6-311G(d,p) calculated structure of E -6 is in a very good agreement with the experimental X-ray structure. PAE E -6 adopts a twisted conformation in solution, with the downfield chemical shift of H1/H1′ (8.31 ppm); H10/H10′ (δ = 7.20 ppm) and H9/H9′ (δ = 6.86 ppm) in E -6 are positioned above the planes of the opposing naphthalene rings. PAEs E -6 and Z -6 are significantly higher in energy than their corresponding benzo[b]annelated isomers E -7 and Z -7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. CCDC-891703 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033; email: deposit@ccdc.cam.ac.uk]

References

  1. Shoham G, Cohen S, Suissa RM, Agranat I (1988) In: Stezowski JJ, Huang J-L, Shao M-C (eds) Molecular structure: chemical reactivity and biological activity, IUCr crystallographic symposia 2. Oxford University Press, Oxford, pp 290–312

    Google Scholar 

  2. Biedermann PU, Stezowski JJ, Agranat I (1998) In: Thummel RP (ed) Advances in theoretically interesting molecules, vol 4. JAI Press, Stamford, pp 245–322

    Chapter  Google Scholar 

  3. de la Harpe C, van Dorp WA (1875) Ber Dtsch Chem Ges 8:1048–1050

    Article  Google Scholar 

  4. Gurgenjanz G, von Kostanecki S (1895) Ber Dtsch Chem Ges 28:2310–2311

    Article  CAS  Google Scholar 

  5. Meyer H (1909) Monatsh Chem 30:165–177

    Article  CAS  Google Scholar 

  6. Meyer H (1909) Ber Dtsch Chem Ges 42:143–145

    Article  CAS  Google Scholar 

  7. Biedermann PU, Levy A, Stezowski JJ, Agranat I (1995) Chirality 7:199–205

    Article  CAS  Google Scholar 

  8. Avoyan RL, Struchkov YT, Dashevskii VG (1966) J Struct Chem (USSR) 7:283–320

    Article  Google Scholar 

  9. Sandström J (1983) In: Allinger NL, Eliel EL, Wilen SH (eds) Topics in stereochemistry, vol 14. Wiley, New York, pp 83–181

    Chapter  Google Scholar 

  10. Stezowski JJ, Hildenbrand T, Suissa MR, Agranat I (1990) Struct Chem 1:123–126

    Article  CAS  Google Scholar 

  11. Tsefrikas VM, Scott LT (2006) Chem Rev 106:4868–4884

    Article  CAS  Google Scholar 

  12. Luef W, Keese R (1991) In: Eliel EL, Wilen SH, Allinger NL (eds) Topics in stereochemistry, vol 20. Wiley, New York, pp 231–318

    Chapter  Google Scholar 

  13. Sandström J (1997) In: Patai S (ed) The chemistry of double-bonded functional groups, Supplement A3, Wiley, New York, pp 1253–1280

  14. Biedermann PU, Stezowski JJ, Agranat I (2001) Eur J Org Chem 2001:15–34

  15. Bell F, Waring DH (1949) J Chem Soc 1949:2689–2693

  16. Harnik E, Herbstein FH, Schmidt GMJ (1951) Nature 168:158–160

    Article  CAS  Google Scholar 

  17. Biedermann PU, Stezowski JJ, Agranat I (2001) Chem Commun 2001:954–955

  18. Biedermann PU, Stezowski JJ, Agranat I (2006) Chem Eur J 12:3345–3354

    Google Scholar 

  19. Levy A, Pogodin S, Cohen S, Agranat I (2007) Eur J Org Chem 2007:5198–5211

    Article  Google Scholar 

  20. Bergmann ED (1955) Prog Org Chem 3:81–171

    CAS  Google Scholar 

  21. Rabinovitz M, Agranat I, Bergmann ED (1965) Tetrahedron Lett 6:1265–1269

    Article  Google Scholar 

  22. Lee J-S, Nyburg SC (1985) Acta Crystallogr C 41:560–567

    Article  Google Scholar 

  23. Biedermann PU, Levy A, Suissa MR, Stezowski JJ, Agranat I (1996) Enantiomer 1:75–80

    CAS  Google Scholar 

  24. Brunetti FG, Gong X, Tong M, Heeger AJ, Wudl F (2010) Angew Chem Int Ed 49:532–536

    Article  CAS  Google Scholar 

  25. Latif A, Soliman G (1944) J Chem Soc 1944:56–58

  26. Streitwieser A Jr, Brown SM (1988) J Org Chem 53:904–906

    Article  CAS  Google Scholar 

  27. Reimlinger H (1964) Chem Ber 97:3493–3502

    Article  CAS  Google Scholar 

  28. Wanscheidt AA (1926) J Russ Phys Chem Soc 58:249–269 [Chem Abstr (1927) 21, 3616]

    Google Scholar 

  29. SMART-NT V5.6, BRUKER AXS GmbH (2002) Karlsruhe

  30. SAINT-NT V5.0, BRUKER AXS GmbH (2002) Karlsruhe

  31. SHELXTL-NT V6.1, BRUKER AXS GmbH (2002) Karlsruhe

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi S, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford

  33. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  35. Barton DHR, Smith ER, Willis BJ (1970) J Chem Soc D Chem Commun 1970:1226

  36. Barton DHR (1996) Reason and imagination: reflection on research in organic chemistry; selected papers of DHR Barton, Imperial College Press and World Scientific, Singapore, pp 489–492

  37. Wang Z (2009) Comprehensive organic name reactions and reagents, vol 1, Chapter 56. Wiley, New York, pp 249–253

    Google Scholar 

  38. Wang Z (2009) Comprehensive organic name reactions and reagents, vol 2, Chapter 291. Wiley, New York, p 1310

    Google Scholar 

  39. Mehta G, Venkateswaran RV (2000) Tetrahedron 56:1399–1422

    Article  CAS  Google Scholar 

  40. Assadi N, Pogodin S, Agranat I (2011) Eur J Org Chem 2011:6773–6780

    Article  CAS  Google Scholar 

  41. Pedersen BS, Scheibye S, Nilsson NH, Lawesson SO (1978) Bull Soc Chim Belgium 87:223–228

    Article  CAS  Google Scholar 

  42. Wanscheidt AA (1926) Ber Dtsch Chem Ges 59:2092–2100

    Article  Google Scholar 

  43. Josephy E, Radt F (eds) (1940) Elsevier’s encyclopaedia of organic chemistry, vol 14, Series III. Elsevier, New York, pp 300–302

    Google Scholar 

  44. Rabinovitz M, Agranat I, Weitzen-Dagan A (1974) Tetrahedron Lett 14:1241–1244

    Article  Google Scholar 

  45. Bergmann ED, Fischer E, Hirshberg Y, Lavie D, Sprinzak Y, Szmuszkovicz J (1953) Bull Soc Chim France 20:798–809

    Google Scholar 

  46. Mills JFD, Nyburg SC (1963) J Chem Soc (Lond) 1963:308–321

    Article  Google Scholar 

  47. Apgar PA, Wasserman E (1978) unpublished results (Allied Chemical), quoted in Ref. 1

  48. Zefirov YV (1997) Crystallogr Rep (Kristallografiya) 42:111–116

    Google Scholar 

  49. Desiraju GR, Gavezzotti A (1989) Acta Crystallogr B 45:473–482

    Article  Google Scholar 

  50. Levy A, Biedermann PU, Cohen S, Agranat I (2000) J Chem Soc Perkin Trans 2:725–735

    Google Scholar 

  51. Martin NH, Allen NW III, Moore KD, Vo L (1998) J Mol Struct (Theochem) 454:161–166

    Article  CAS  Google Scholar 

  52. De Proft F, Geerlings P (2001) Chem Rev 101:1451–1464

    Article  Google Scholar 

  53. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley–VCH, Weinheim

    Book  Google Scholar 

  54. Pogodin S, Rae ID, Agranat I (2006) Eur J Org Chem 2006:5059–5068

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Agranat.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11224-014-0483-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assadi, N., Pogodin, S., Cohen, S. et al. Naphthologs of overcrowded bistricyclic aromatic enes: (E)-bisbenzo[a]fluorenylidene. Struct Chem 24, 1229–1240 (2013). https://doi.org/10.1007/s11224-012-0146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0146-4

Keywords

Navigation