Skip to main content
Log in

Computational DFT studies on a series of toluene derivatives as potential high energy density compounds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Based on the full optimized molecular geometric structures at B3LYP/6-31G**, B3LYP/6-31+G**, B3P86/6-31G**, and B3P86/6-31+G** levels, the densities (ρ), detonation velocities (D), and pressures (P) for a series of toluene derivatives, as well as their thermal stabilities, were investigated to look for high energy density compounds (HEDCs). The heats of formation (HOFs) are also calculated via designed isodesmic reactions. The calculations on the bond dissociation energies (BDEs) indicate that the BDEs of the initial scission step are between 48 and 59 kcal/mol, and pentanitrotoluene is the most reactive compound, while 2,4,6-trinitrotoluene is the least reactive compound for toluene derivatives studied. A good linear relationship between BDE/E and impact sensitivity is also obtained. The condensed phase HOFs are calculated for the title compounds. These results would provide basic information for the further studies of HEDCs. The detonation data of pentanitrotoluene show that it meets the requirement for HEDCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andrews DH (1990) Phys Rev 36:544

    Article  Google Scholar 

  2. Holtz EV, Ornellas DO, Foltz MF (1994) Propellants Explos Pyrotechn 19:206

    Article  Google Scholar 

  3. Foltz MF (1994) Propellants Explos Pyrotechn 19:63

    Article  CAS  Google Scholar 

  4. Sikder AK, Sikder N (2004) J Hazard Mater 112:1

    Article  CAS  Google Scholar 

  5. Sikder AK, Maddalla G, Agraval JP, Singh H (2001) J Hazard Mater 84:1

    Article  CAS  Google Scholar 

  6. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Ann Rev Mater Res 31:291

    Article  CAS  Google Scholar 

  7. Urbanski T (1984) Chemistry and technology of explosives. Pergamon, New York

    Google Scholar 

  8. Kamlet MJ (1976) In: Proceedings of the 6th symposium (international) Deton. Report No. ACR 221 (Office of Naval Research, 1976), p 312

  9. Kamlet MJ, Adolph HG (1979) Propellants Explos 4:30

    Article  CAS  Google Scholar 

  10. Brill TB, James K (1993) Chem Rev 93:2667

    Article  CAS  Google Scholar 

  11. Owens FJ (1996) J Mol Struct (Theochem) 370:11

    Article  CAS  Google Scholar 

  12. Melius CF (1990) In: Bulusu SN (ed) Chemistry and physics of energetic materials. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  13. Rice BM, Sahu S, Owens FJ (2002) J Mol Struct (Theochem) 583:69

    Article  CAS  Google Scholar 

  14. Zhang SW, Truong TN (2000) J Phys Chem A 104:7304

    Article  CAS  Google Scholar 

  15. Politzer P, Murray JS (1995) Mol Phys 86:251

    Article  CAS  Google Scholar 

  16. Politzer P, Lane P (1996) J Mol. Struct. (Theochem) 388:51

    CAS  Google Scholar 

  17. Politzer P, Murray JS (1996) J Mol Struct (Theochem) 376:419

    CAS  Google Scholar 

  18. Politzer P, Grice ME, Seminario JM (1997) Int J Quantum Chem 61:389

    Article  CAS  Google Scholar 

  19. Luo YR (2003) Handbook of bond dissociation energies in organic compounds. CRC Press, Boca Raton

    Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head Gordon M, Replogle ES, Pople JA (2003) GAUSSIAN 03 Revision B.02. Gaussian Inc., Pittsburgh

    Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  23. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  24. Chen PC, Chieh YC, Tzeng SC (2003) J Mol Struct (Theochem) 634:215

    Article  CAS  Google Scholar 

  25. Li XH, Tang ZX, Zhang XZ, Yang XD (2009) J Hazard Mater 165:372

    Article  CAS  Google Scholar 

  26. Li XH, Zhang RZ, Zhang XZ, Yang XD, Cheng XL (2007) Chin J Struct Chem 26:1481

    CAS  Google Scholar 

  27. Hahre WJ, Radom L, Schleyer PVR (1986) Ab Initio molecular orbital theory. Wiley, New York

    Google Scholar 

  28. Benson SW (1976) Thermochemical kinetics, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  29. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770

    Article  CAS  Google Scholar 

  30. Li XH, Zhang RZ, Zhang XZ (2007) Chin J Struct Chem 26:1481

    CAS  Google Scholar 

  31. Chung GS, Schimidt MW, Gordon MS (2000) J Phys Chem A 104:5647

    Article  CAS  Google Scholar 

  32. Fan XW, Ju XH, Xiao HM (2008) J Hazard Mater 156:342

    Article  CAS  Google Scholar 

  33. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291

    Article  CAS  Google Scholar 

  34. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Article  CAS  Google Scholar 

  35. Pedley JB (1994) Thermochemical data and structures of organic compounds. Thermodynamic Research Center, College Station

    Google Scholar 

  36. Frenkel M, Kabo GJ, Marsh KN, Roganov GN, Wilhoit RC (1994) Thermodynamics of organic compounds in the gas state. Thermodynamic Research Center, College Station

    Google Scholar 

  37. NIST Standard Reference Database No. 69, July release (2001)

  38. Seminario JM, Politzer P (1995) Modern density functional theory: a tool for chemistry. Elsevier, New York

    Google Scholar 

  39. Gong XD, Xiao HM (2000) J Mol Struct (Theochem) 498:181

    Article  CAS  Google Scholar 

  40. Gong XD, Xiao HM (2001) J Mol Struct (Theochem) 572:213

    Article  CAS  Google Scholar 

  41. Akutsu Y, Tahara S, Yoshida T (1992) J Energy Mater 10:173

    Article  CAS  Google Scholar 

  42. Byrd EFC, Rice BM (2006) J Phys Chem A 110:1005

    Article  CAS  Google Scholar 

  43. Atkins PW (1982) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  44. Politzer P, Murray JS, Brinck T, Lane P (1994) Immunoanalysis of agrochemicals. American Chemical Society, Washington, DC

    Google Scholar 

  45. Murray JS, Politzer P (1994) Quantitative treatment of solute/solvent interactions. Elsevier Scientific, Amsterdam

    Google Scholar 

  46. Politzer P, Murray JS (1998) J Phys Chem A 102:1018

    Article  CAS  Google Scholar 

  47. Palm WJ III (1999) Matlab for engineering applications. WBC/McGraw-Hill, New York

    Google Scholar 

  48. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. J Chem Phys 48:23

    Article  CAS  Google Scholar 

  49. Zhang XH, Yun ZH (1989) Explosive chemistry. National Defense Industry Press, Beijing

    Google Scholar 

  50. Politzer P, Martinez J, Jane Murray S, Monica Concha C, Alejandro T (2009) Mol Phys 107:2095

    Article  CAS  Google Scholar 

  51. Ou YX, Chen JJ (2005) The high energy and density compounds. National Defense Industry Press, Beijing

    Google Scholar 

  52. Robert Carper W, Davis LP, Extine MW (1982) J Phys Chem 86:459

    Article  Google Scholar 

  53. Olah GA, Squire DR (1991) Chemistry of energetic materials. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgment

We gratefully thank the National Natural Science Foundation of China (Grant 10774039) and the Grant from Development Program in Science and Technology of Henan Province (No. 102300410114 and No. 112300410206), Henan University of Science and Technology for Young Scholars (No. 2009QN0032) for their support in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XH., Fu, ZM. & Zhang, XZ. Computational DFT studies on a series of toluene derivatives as potential high energy density compounds. Struct Chem 23, 515–524 (2012). https://doi.org/10.1007/s11224-011-9897-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9897-6

Keywords

Navigation