Skip to main content
Log in

Theoretical investigation into the solvent effect on the thermal decomposition of RDX in tetrahydrofuran, acetone, toluene, and benzene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In order to clarify the solvent effect on the thermal decomposition of explosive, the N–NO2 trigger-bond strengths and ring strains of RDX (cyclotrimethylenetrinitramine) in its H-bonded complexes with solvent molecules (i.e., tetrahydrofuran, acetone, toluene, and benzene), and the activation energies of the intermolecular hydrogen exchanges between the solvent molecules and C3H8O2N4 or CH4O2N2, as the model molecule of RDX, were investigated by the BHandHLYP, B3LYP, MP2(full), and M06-2X methods with the 6–311 +  + G(2df,2p) basis set, accompanied by a comparison with the calculations by the integral equation formalism polarized continuum model. The solvent effects ignore the ring strain while strengthening the N–NO2 bond, leading to a possible decreased sensitivity, as is opposite to the experimental results. However, the activation energies are in the order of C3H8O2N4/CH4O2N2∙∙∙acetone < C3H8O2N4/CH4O2N2∙∙∙THF < C3H8O2N4/CH4O2N2∙∙∙toluene < C3H8O2N4/CH4O2N2∙∙∙benzene < C3H8O2N4/CH4O2N2, suggesting that the order of the critical explosion temperatures might be RDX∙∙∙acetone < RDX∙∙∙THF < RDX∙∙∙toluene < RDX∙∙∙benzene < RDX, as is roughly consistent with the experimental results. Therefore, the intermolecular hydrogen exchange with the HONO elimination is a possible mechanism of the solvent effect on the initial thermal decomposition of RDX. The solvent effect on the sensitivity is analyzed by the surface electrostatic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

We confirm the availability of all the data and materials in this manuscript. The manuscript has full control of all primary data, and the authors agree to allow the journal to review their data if requested.

Code availability

N/A.

References

  1. Wang J, Brower KR, Naud DL (1997) Evidence of an elimination mechanism in thermal decomposition of RDX and related compounds under high pressure in solution. J Org Chem 62:9055–9060

    Article  CAS  Google Scholar 

  2. Oxely JC, Kooh AB, Szekeres R, Zheng W (1994) Mechanism of nitramine thermolysis. J Phys Chem 98:7004–7008

    Article  Google Scholar 

  3. Liu ZR, Liu Y, Fan XP, Zhao FQ (2006) Thermal decomposition of RDX and HMX explosives part III: mechanism of thermal decomposition. Chin J Expl Propell 29:14–18

    Google Scholar 

  4. Behrens R (1987) Simultaneous thermogravimetric modulated beam mass spectrometry and time-of-flight velocity spectra measurements: thermal decomposition mechanisms of RDX and HMX. 24th JANNAF combustion meeting, 1:333.

  5. Stewart PH, Jeffries JB, Zellweger JM, McMillen DF, Golden DM (1989) Molecular beam sampled laser pyrolysis of dimethylnitramine. J Phys Chem 93:3557–3563

    Article  CAS  Google Scholar 

  6. Farber M, Srivastava RD (1979) Mass spectrometric investigation of the thermal decomposition of RDX. Chem Phys Lett 64:307–310

    Article  CAS  Google Scholar 

  7. Farber M, Srivastava RD (1981) Mass spectrometric studies of the thermal decomposition of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX). Chem Phys Lett 80:345–349

    Article  CAS  Google Scholar 

  8. Melius CF (1990) In chemistry and physics of energetic materials. Bulusu SN, Ed, Kluwer Dordrecht, P21.

  9. Harris NJ, Lammertsma K (1997) Ab initio density functional computations of conformations and bond dissociation energies for hexahydro-1,3,5-trinitro-1,3,5-triazine. J Am Chem Soc 119:6583–6589

    Article  CAS  Google Scholar 

  10. Dorset H, White A (2000) Overview of molecular modeling and ab initio molecular orbital methods suitable for use with energetic materials. Defence Science and Technology Organisation, Salisbury (Australia), P32–35.

  11. Habibollahzadeh D, Grodzicki M, Seminario JM, Politzer P (1991) Computational study of the concerted gas-phase triple dissociations of 1,3,5-trazacyclohexane and its 1,3,5-trinitro derivative. J Phys Chem A 95:7699–7702

    Article  CAS  Google Scholar 

  12. Wu CJ, Fried LE (1997) Ab initio study of RDX decomposition mechanisms. J Phys Chem A 101:8675–8679

    Article  CAS  Google Scholar 

  13. Pivina TS, Sokerina EV, Lushnikov DE (1999) Computer modeling of probable decomposition reactions: cyclonitramines. Propell Explos Pyrot 24:99–107

    Article  CAS  Google Scholar 

  14. Chakraborty D, Muller RP, Dasgupta S, Goddard WA III (2000) The mechanism for unimolecular decomposition of RDX (1,3,5-trinitro-1,3,5-triazine), an ab initio study. J Phys Chem A 104:2261–2272

    Article  CAS  Google Scholar 

  15. Asano T, le Noble WJ (1978) Activation and reaction volumes in solution. Chem Rev 78:407–489

    Article  CAS  Google Scholar 

  16. Shu YJ, Dubikhin VV, Nazin GM, Manelis GB (2000) Effect of solvents on thermal decomposition of RDX. Chin J Energ Mater 8:108–110

    CAS  Google Scholar 

  17. Shu YJ, Dubikhin VV, Nazin GM, Manelis GB (2001) Thermal decomposition mechanism of RDX in inertial solvents. Chin J Expl Propell 4:58–60

    Google Scholar 

  18. Hoffsommer JC, Glover DJ (1985) Thermal decomposition of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX): kinetics of nitroso intermediates formation. Combust Flame 59:303–310

    Article  CAS  Google Scholar 

  19. Shoaf AL, Bayse CA (2018) Trigger bond analysis of nitroaromatic energetic materials using wiberg bond indices. J Comput Chem 19:1236–1248

    Article  Google Scholar 

  20. Yang L, Zhang J, Zhang TL, Zhang JG, Cui Y (2009) Crystal structures, thermal decompositions and sensitivity properties of [Cu(ethylenediamine)2(nitroformate)2] and [Cd(ethylenediamine)3](nitroformate)2. J Hazard Mater 164:962–967

    Article  CAS  PubMed  Google Scholar 

  21. Buszewski B, Michel M, Cudziło S, Chyłek Z (2009) High performance liquid chromatography of 1,1-diamino-2,2-dinitroethene and some intermediate products of its synthesis. J Hazard Mater 164:1051–1058

    Article  CAS  PubMed  Google Scholar 

  22. Wang H-B, Shi W-J, Ren F-D, Yang L, Wang J-L (2012) A B3LYP and MP2(full) theoretical investigation into explosive sensitivity upon the formation of the intermolecular hydrogen-bonding interaction between the nitro group of RNO2 (R = –CH3, –NH2, –OCH3) and HF, HCl or HBr. Comput Theor Chem 994:73–80

    Article  CAS  Google Scholar 

  23. Li B-H, Shi W-J, Ren F-D, Wang Y (2013) A B3LYP and MP2(full) theoretical investigation into the strength of the C-NO2 bond upon the formation of the intermolecular hydrogen-bonding interaction between HF and the nitro group of nitrotriazole or its methyl derivatives. J Mol Model 19:511–519

    Article  PubMed  Google Scholar 

  24. Meng RH, Cao X, Hu SQ, Hu LS (2017) Theoretical insight into the solvent effect of H2O and formamide on the cooperativity effect in HMX complex. J Mol Model 23:237

    Article  PubMed  Google Scholar 

  25. Qiu W, Ren FD, Shi WJ, Wang YH (2015) A theoretical study on the strength of the C-NO2 bond and ring strain upon the formation of the intermolecular H-bonding interaction between HF and nitro group in nitrocyclopropane, nitrocyclobutane, nitrocyclopentane or nitrocyclohexane. J Mol Model 21:114–122

    Article  PubMed  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Inc.. USA: Wallingford CT.

  27. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  PubMed  Google Scholar 

  28. Duijineveldt FB, Duijineveldt-van de Rijdt JCMV, Lenthe JHV (1994) State of the art in counterpoise theory. Chem Rev 94:1873–1885

    Article  Google Scholar 

  29. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  30. Wheeler SE, Houk KN, Von RSP, Allen WD (2009) A hierarchy of homodesmotic reactions for thermochemistry. J Am Chem Soc 131:2547–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gimarc BM, Zhao M (1997) Strain and resonance energies in main-group homoatomic rings and clusters. Coord Chem Rev 158:385–412

    Article  CAS  Google Scholar 

  32. Wodrich MD, Gonthier JF, Steinmann SN, Corminboeuf C (2010) How strained are carbomeric-cycloalkanes? J Phys Chem A 114:6705–6712

    Article  CAS  PubMed  Google Scholar 

  33. Steinfeld JI, Fransisco JS, Hase WL (1999) Chemical kinetics and dynamics, Prentice Hall, New Jersey, 2nd edn.

  34. Arabi AA, Matta CF (2011) Effects of external electric fields on double proton transfer kinetics in the formic acid dimer. Phys Chem Chem Phys 13:13738–13748

    Article  CAS  PubMed  Google Scholar 

  35. Wigner EP (1932) Über das überschreiten von potential schwellen bei chemischen reaktionen. Z Phys Chem B 19(1932):203–216

    Article  Google Scholar 

  36. Eyring H, Eyring EM (1963) Modern chemical kinetics, Reinhold Publishing Corporation, New York, 1963.

  37. Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21:25–35

    Article  PubMed  Google Scholar 

  38. Lu T (2014) Multiwfn: a multifunctional wavefunction analyzer, Version 3.3.5. Beijing.

  39. Choi CS, Prince E (1972) The crystal structure of cyclotrimethylenetrinitramine. Acta Crystallogr Sect B 28:2857–2862

    Article  CAS  Google Scholar 

  40. Singla P, Riyaz M, Singhal S, Goel N (2016) Theoretical study of adsorption of amino acids on graphene and BN sheet in gas and aqueous phase with empirical DFT dispersion correction. Phys Chem Chem Phys 18:5597–5604

    Article  CAS  PubMed  Google Scholar 

  41. Soniat M, Rogers DM, Rempe SB (2015) Dispersion-and exchange-corrected density functional theory for sodium ion hydration. J Chem Theory Comput 11:2958–2967

    Article  CAS  PubMed  Google Scholar 

  42. DiLabio GA, Johnson ER, Otero-de-la-Roza A (2013) Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies. Phys Chem Chem Phys 15:12821–12828

    Article  CAS  PubMed  Google Scholar 

  43. Budyka MF, Zyubina TS, Zarkadis AK (2002) Correlating ground and excited state properties: a quantum chemical study of the photodissociation of the C-N bond in N-substituted anilines. J Mol Struct (Theochem) 594:113–125

    Article  CAS  Google Scholar 

  44. Brinck T, Haeberlin M, Jonsson M (1997) A computational analysis of substituent effects on the O−H bond dissociation energy in phenols: polar versus radical effects. J Am Chem Soc 119:4239–4244

    Article  CAS  Google Scholar 

  45. Delpuech A, Cherville J (1979) Relation entre la structure electronique et la sensibilité au choc des explosifs secondaires nitrés. Critère moléculaire de sensibilité II. Cas des esters nitriques. Propell Explos Pyrot 4:121–128

    Article  CAS  Google Scholar 

  46. Tan B, Long X, Li J, Nie F, Huang J (2012) Insight into shock-induced chemical reaction from the perspective of ring strain and rotation of chemical bonds. J Mol Model 18:5127–5132

    Article  CAS  PubMed  Google Scholar 

  47. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  48. Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20:2223–2230

    Article  PubMed  Google Scholar 

  49. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C-NO2/N–NO2 bond dissociation energies. Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  50. Politzer P, Murray JS (2014) Some perspectives on sensitivity to initation of detonation, in: Green Energetic Materials, (Ed.: T. Brinck), Wiley, Chichester, ch. 3, pp. 45–62.

  51. Klapötke TM, Nordheiter A, Stierstorfer J (2012) Synthesis and reactivity of an unexpected highly sensitive 1-carboxymethyl-3-diazonio-5-nitrimino-1,2,4-triazolew. New J Chem 36:1463–1468

    Article  Google Scholar 

  52. Li H, Shu Y, Gao S, Chen L, Ma Q, Ju X (2013) Easy methods to study the smart energetic TNT/CL-20 co-crystal. J Mol Model 19:4909–4917

    Article  CAS  PubMed  Google Scholar 

  53. Meng RH (2018) Study on thermal decomposition of HMX and RDX and its solution, Ph. D. Dissertation, North University of China, P42~68.

  54. Zeman S, Atalar T, Friedl Z, Ju XH (2009) Accounts of the new aspects of nitromethane initiation reactivity. Centr Europ J Energ Mater 6:119–133

    CAS  Google Scholar 

  55. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propell Explos Pyrotech 41:414–425

    Article  CAS  Google Scholar 

  56. Storm CB, Stine JR, Kramer JF (1990) Sensitivity relationships in energetic materials, in: chemistry and physics of energetic materials, (Ed.: S. N. Bulusu), Kluwer, Dordrecht, The Netherlands, ch. 27, pp. 605–639.

  57. Kamlet MJ, (1976) The relationship of impact sensitivity with structure of organic high explosives: I. polynitroaliphatic explosives, in: proceedings of the 6th symposium (international) on detonation, report No. ACR 221, Office of Naval Research, Arlington, VA, pp. 312–322.

  58. Kamlet MJ, Adolph HG (1979) The relationship of impact sensitivity with structure of organic high explosives II. Polynitroaromatic explosives Propellants Explos 4:30–34

    Article  CAS  Google Scholar 

  59. Armstrong RW, Coffey CS, DeVost VF, Elban WL (1990) Crystal size dependence for impact sensitivities of cyclotrimethylenetrinitramine. J Appl Phys 68:979–984

    Article  CAS  Google Scholar 

  60. Armstrong RW, Elban WL (2006) Materials science and technology aspects of energetic (explosive) materials. Mater Sci Technol 22:381–395

    Article  CAS  Google Scholar 

  61. Doherty RM, Watt DS (2008) Relationship between RDX properties and sensitivity. Propellants Explos Pyrotech 33:4–13

    Article  CAS  Google Scholar 

  62. Zeman S (2007) Sensitivities of high energy compounds. Struct Bonding (Berlin) 125:195–271

    Article  CAS  Google Scholar 

  63. Politzer P, Murray JS (2014) Detonation performance and sensitivity: a quest for balance. Adv Quantum Chem 69:1–30

    Article  CAS  Google Scholar 

  64. Brill TB, James KJ (1993) Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives. Chem Rev 93:2667–2692

    Article  CAS  Google Scholar 

  65. Politzer P, Murray JS (2003) Sensitivity correlations, in: energetic materials. Part 2. deonation, combustion, (Eds.: P. Politzer, J. S. Murray), Elsevier, Amsterdam, ch. 1, pp. 5–23.

  66. Anders G Jr, Borges I (2011) Topological analysis of the molecular charge density and impact sensitivity models of energetic materials. J Phys Chem A 115:9055–9068

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful for the financial support from the Shanxi Province Natural Science Foundation of China (No. 201801D121067).

Author information

Authors and Affiliations

Authors

Contributions

Fu-de Ren: Project administration, investigation, writing—original draft (introduction, theoretical framework and computational details, and conclusions), review and editing.

Xiong Cao: Conceptualization, calculation and data curation, data analysis and technical graphics.

Yu-tong Cui: Part of the calculations, figure processing for the surface electrostatic potentials.

Corresponding author

Correspondence to Fu-de Ren.

Ethics declarations

Ethics approval

We allow the journal to review all the data, and we confirm the validity of the results. There are no financial relationships. This work was not published previously and it is not submitted to more than one journal. It is also not split up into several parts to submit. No data have been fabricated or manipulated.

Consent to participate

All the authors agree to participate in this investigation.

Consent for publication

All the authors agree to publish the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Fd., Cao, X. & Cui, Yt. Theoretical investigation into the solvent effect on the thermal decomposition of RDX in tetrahydrofuran, acetone, toluene, and benzene. J Mol Model 27, 343 (2021). https://doi.org/10.1007/s00894-021-04966-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04966-z

Keywords

Navigation