Skip to main content
Log in

New potential high energy density compounds: Oxadiaziridine derivatives

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The -CN, -N3, -NF2, -NH2, -NHNO2, -NO2, and -ONO2 derivatives of oxadiaziridine were studied using B3LYP/6-311G** level of density functional theory. The gas phase heats of formation of oxadiaziridine derivatives were calculated by isodesmic reaction. All these compounds have high and positive heats of formation due to strain energies of small ring. Detonation properties were calculated via Kamlet-Jacobes equations and specific impulse. The effects of substituent groups on detonation performance were discussed. The impact sensitivity was estimated according to the “available free space per molecule in unit cell” and “energy gaps” methods. The similar conclusions were given by two different methods. The effects of substituents on impact sensitivity were discussed. According to the given estimations of detonation performance and sensitivity, some oxadiaziridine derivatives may be considered promising high energies materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, New York, 2004).

  2. M. Anniyappan, M. B. Talawar, G. M. Gore, S. Venugopalan, and B. R. Gandhe, J. Hazard. Mater. 137, 812 (2006).

    Article  CAS  Google Scholar 

  3. S. Garg, H. Gao, Y.-H. Joo, D. A. Parrish, Y. Huang, and J. M. Shreeve, J. Am. Chem. Soc. 132, 8888 (2010).

    Article  CAS  Google Scholar 

  4. M. Gobel and T. M. Klapotke, Adv. Funct. Mater. 19, 347 (2009).

    Article  Google Scholar 

  5. A. K. Chandra and K. Bhanuprakash, J. Mol. Struct.: THEOCHEM 151, 149 (1987).

    Article  Google Scholar 

  6. J. M. Halstead, J. N. Whittaker, and D. W. Ball, Propell. Explos. Pyrotech. 37, 498 (2012).

    Article  CAS  Google Scholar 

  7. W. Chi, B. Li, and H. Wu, Struct. Chem. 24, 375 (2013).

    Article  CAS  Google Scholar 

  8. D. W. Ball, J. Mol. Struct.: THEOCHEM 724, 19 (2005).

    Article  CAS  Google Scholar 

  9. Y.-h. Ding and S. Inagaki, Chem. Lett. 32, 304 (2003).

    Article  CAS  Google Scholar 

  10. S. S. Hecht and F. D. Greene, J. Am. Chem. Soc. 89, 6761 (1967).

    Article  CAS  Google Scholar 

  11. J. Swigert and K. G. Taylor, J. Am. Chem. Soc. 93, 7337 (1971).

    Article  CAS  Google Scholar 

  12. F. D. Greene and S. S. Hecht, J. Org. Chem. 35, 2482 (1970).

    Article  CAS  Google Scholar 

  13. M. Alcami, O. Mo, and M. Yanez, J. Comput. Chem. 19, 1072 (1998).

    Article  CAS  Google Scholar 

  14. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz; A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 03 (Gaussian Inc., Pittsburgh, PA, 2003).

    Google Scholar 

  15. W. J. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, J. Am. Chem. Soc. 92, 4796 (1970).

    Article  CAS  Google Scholar 

  16. M. J. Kamlet and S. J. Jacobs, J. Chem. Phys. 48, 23 (1968).

    Article  CAS  Google Scholar 

  17. P. Politzer, J. Martinez, J. S. Murray, M. C. Concha, and A. Toro-Labbe, Mol. Phys. 107, 2095 (2009).

    Article  CAS  Google Scholar 

  18. F. A. Bulat, A. Toro-Labbe, T. Brinck, J. S. Murray, and P. Politzer, J. Mol. Model. 16, 1679 (2010).

    Article  CAS  Google Scholar 

  19. P. Politzer, J. S. Murray, and M. E. Grice, in Chemistry of Energetic Materials (Academic Press, San Diego, CA, 1991).

    Google Scholar 

  20. R. Mayer, Explosives (VCH, Weinheim, 1987).

    Google Scholar 

  21. J. E. Del Bene, W. B. Person, and K. Szczepaniak, J. Phys. Chem. 99, 10705 (1995).

    Article  Google Scholar 

  22. P. R. Schreiner, A. A. Fokin, R. A. Pascal, and A. de Meijere, Org. Lett. 8, 3635 (2006).

    Article  CAS  Google Scholar 

  23. P. Politzer, J. S. Murray, M. E. Grice, and P. Sjoberg, in Chemistry of Energetic Materials (Academic Press, San Diego, CA, 1991).

    Google Scholar 

  24. F. J. Owens, J. Mol. Struct.: THEOCHEM 121, 213 (1985).

    Article  Google Scholar 

  25. F. J. Owens, K. Jayasuriya, L. Abrahmsen, and P. Politzer, Chem. Phys. Lett. 116, 434 (1985).

    Article  CAS  Google Scholar 

  26. P. Politzer, J. S. Murray, M. E. Grice, M. Desalvo, and E. Miller, Mol. Phys. 91, 923 (1997).

    Article  CAS  Google Scholar 

  27. J. S. Murray, P. Lane, and P. Politzer, Mol. Phys. 93, 187 (1998).

    Article  CAS  Google Scholar 

  28. P. Politzer and J. S. Murray, Mol. Phys. 86, 251 (1995).

    Article  CAS  Google Scholar 

  29. P. Politzer and J. S. Murray, J. Mol. Struct. 376, 419 (1996).

    Article  CAS  Google Scholar 

  30. M. Pospíšil, P. Vávra, M. Concha, J. Murray, and P. Politzer, J. Mol. Model. 16, 895 (2010).

    Article  Google Scholar 

  31. M. Pospišil, P. Vávra, M. Concha, J. Murray, and P. Politzer, J. Mol. Model. 17, 2569 (2011).

    Article  Google Scholar 

  32. H. Zhang, F. Cheung, F. Zhao, and X.-L. Cheng, Int. J. Quantum Chem. 109, 1547 (2009).

    Article  CAS  Google Scholar 

  33. Y.-F. Li, X.-W. Fan, Z.-Y. Wang, and X.-H. Ju, J. Mol. Struct.: THEOCHEM 896, 96 (2009).

    Article  CAS  Google Scholar 

  34. X.-H. Ju, Z.-Y. Wang, X.-F. Yan, and H.-M. Xiao, J. Mol. Struct.: THEOCHEM 804, 95 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Chi, WJ. New potential high energy density compounds: Oxadiaziridine derivatives. Russ. J. Phys. Chem. 88, 1700–1705 (2014). https://doi.org/10.1134/S0036024414100173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414100173

Keywords

Navigation