Skip to main content
Log in

On the thermal expansion of molecules

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Experimental results for a variety of molecules have shown that their bond lengths expand appreciably when the molecules are heated, as expected from the asymmetric Morse-like potentials characterizing the bonds. However, in a series of papers on structures determined by gas-phase electron diffraction, Giricheva et al. claimed that, for very hot MX3 molecules, effects of out-of-plane vibrations cancel the thermal expansion of the M–X bonds. This is incorrect. Although the computations to support their claim were correct as far as they went, the authors neglected the effects of asymmetric vibrational modes and centrifugal stretches of the bonds. In the present report, we show that quantum chemical computations for LaI3 reveal the crucial roles played by the terms neglected by Giricheva et al., which terms are responsible for thermal bond stretches of approximately 0.023 Å at 1142 K. In addition, because the iodine atoms in LaI3 are further apart in the mean structure than the sum of their Pauling van der Waals radii, the geminal nonbonded interactions are attractive. This accounts for the fact that the Morse asymmetry constant for the symmetric stretch mode is smaller than that for the asymmetric stretch. It also helps to explain the very large amplitude of the out-of-plane puckering mode, which tends to decrease the La–I bond length during the puckering trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bartell LS (1955) J Chem Phys 23:1219

    Article  CAS  Google Scholar 

  2. Kuchitsu K, Bartell LS (1961) J Chem Phys 35:1945

    Article  CAS  Google Scholar 

  3. Kuchitsu K (1967) Bull Chem Soc Jpn 40:498

    Article  CAS  Google Scholar 

  4. Bartell LS, Kuchitsu K, de Neui RJ (1961) J Chem Phys 35:1211

    Article  CAS  Google Scholar 

  5. Kuchitsu K, Guillory JP, Bartell LS (1968) J Chem Phys 49:2488

    Article  CAS  Google Scholar 

  6. Kuchitsu K (1992) In: Domenicano A, Hargittai I (eds) Accurate molecular structures: their determination and importance. Oxford University Press, Oxford, pp 14–46

  7. Hargittai M, Hargittai I (1992) Int J Quantum Chem 44:1057

    Article  CAS  Google Scholar 

  8. Bartell LS (1979) J Chem Phys 70:4581

    Article  CAS  Google Scholar 

  9. Bartell LS, Doun SK, Goates SR (1979) J Chem Phys 70:4585

    Article  CAS  Google Scholar 

  10. Goates SR, Bartell LS (1982) J Chem Phys 77:1866

    Article  CAS  Google Scholar 

  11. Bartell LS, Vance WN, Goates SR (1984) J Chem Phys 80:3923

    Article  CAS  Google Scholar 

  12. Ukaji T, Kuchitsu K (1966) Bull Chem Soc Jpn 39:2153

    Article  CAS  Google Scholar 

  13. Goates SR, Bartell LS (1982) J Chem Phys 77:1874

    Article  CAS  Google Scholar 

  14. Hargittai M (2000) Chem Rev 100:2233

    Article  CAS  Google Scholar 

  15. Kuchitsu K, Bartell LS (1962) J Chem Phys 36:2460

    Article  CAS  Google Scholar 

  16. Hargittai M, Subbotina NY, Kolonits M, Gershikov AG (1991) J Chem Phys 94:7278

    Article  CAS  Google Scholar 

  17. Reffy B, Kolonits M, Hargittai M (1998) J Mol Struct 445:139

    Article  CAS  Google Scholar 

  18. Giricheva NI, Girichev GV, Smorodin SV (2007) J Struct Chem 48:407

    Article  CAS  Google Scholar 

  19. Giricheva NI, Girichev GV, Smorodin SV (2007) J Struct Chem 48:593

    Article  CAS  Google Scholar 

  20. Giricheva NI, Shlykov SA, Girichev GV, Chernova EV, Lapykina EA (2009) J Struct Chem 50:228

    Article  CAS  Google Scholar 

  21. Giricheva NI, Shlykov SA, Girichev GV, Chernova EV, Lapykina EA (2009) J Struct Chem 50:235

    Article  CAS  Google Scholar 

  22. Cao XY, Dolg M (2002) THEOCHEM 581:139

    Article  CAS  Google Scholar 

  23. Peterson KA, Shepler BC, Figgen D, Stoll H (2006) J Phys Chem A 110:13877

    Article  CAS  Google Scholar 

  24. Hill JG, Peterson KA, Knizia G, Werner HJ (2009) J Chem Phys 131:13

    Article  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  26. Adamo C, Barone V (1999) Chem Phys Lett 314:152

    Article  CAS  Google Scholar 

  27. Li SG, Hennigan JM, Dixon DA, Peterson KA (2009) J Phys Chem A 113:7861

    Article  CAS  Google Scholar 

  28. Wang NX, Wilson AK (2004) J Chem Phys 121:7632

    Article  CAS  Google Scholar 

  29. Varga Z, Lanza G, Minichino C, Hargittai M (2006) Chem-Eur J 12:8345

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.05. Gaussian Inc., Pittsburgh, PA

  31. Hedberg L, Mills IM (1993) J Mol Spectrosc 160:117

    Article  CAS  Google Scholar 

  32. Sipachev VA (1985) Theochem-J Mol Struct 22:143

    Article  CAS  Google Scholar 

  33. Bartell LS (1963) J Chem Phys 38:1827

    Article  CAS  Google Scholar 

  34. Ehrenfest P (1927) Z Phys 45:455

    Article  Google Scholar 

  35. Sipachev VA (2000) Struct Chem 11:167

    Article  CAS  Google Scholar 

  36. Bunker PR, Jensen P (1998) Molecular symmetry and spectroscopy, 2nd edn. NRC Research Press, Ottawa

    Google Scholar 

  37. Giricheva NI, Shlykov SA, Girichev GV, Galanin IE (2006) J Struct Chem 47:850

    Article  CAS  Google Scholar 

  38. Bartell LS, Kuchitsu K (1962) J Chem Phys 37:691

    Article  CAS  Google Scholar 

  39. Hargittai M, Kolonits M, Tremmel J, Fourquet J-L, Ferey G (1990) Struct Chem 1:75

    Article  CAS  Google Scholar 

  40. Varga Z, Kolonits M, Hargittai M (to be published)

  41. Varga Z, Kolonits M, Hargittai M (2010) Inorg Chem 49:1039

    Article  CAS  Google Scholar 

  42. Solomonik VG, Stanton JF, Boggs JE (2008) J Chem Phys 128:9

    Article  Google Scholar 

  43. Lanza G, Varga Z, Kolonits M, Hargittai M (2008) J Chem Phys 128:14

    Article  Google Scholar 

  44. Hargittai M, Kolonits M, Godorhazy L (1996) Chem Phys Lett 257:321

    Article  CAS  Google Scholar 

  45. Groen CP, Varga Z, Kolonits M, Peterson KA, Hargittai M (2009) Inorg Chem 48:4143

    Article  CAS  Google Scholar 

  46. Hargittai M, Reffy B, Kolonits M (2006) J Phys Chem A 110:3770

    Article  CAS  Google Scholar 

  47. Varga Z, Groen CP, Kolonits M, Hargittai M (2010) Dalton Trans 39:6221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Sven J. Cyvin and Dr. Jon Brunvoll for their valuable advice. We are pleased to acknowledge one of the reviewers for several helpful comments. ZV and MH thank the Hungarian Scientific Research Fund (OTKA K 60365) for support. LSB thanks Social Security for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdolna Hargittai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, Z., Hargittai, M. & Bartell, L.S. On the thermal expansion of molecules. Struct Chem 22, 111–121 (2011). https://doi.org/10.1007/s11224-010-9699-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9699-2

Keywords

Navigation