Skip to main content
Log in

Theoretical study of water-assisted hydrolytic deamination mechanism of adenine

  • Original research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The water-assisted hydrolytic deamination mechanism of adenine was studied using density functional method at B3LYP/6-311G(d,p) level. Intrinsic reaction coordinate (IRC) calculations were performed on the transition states to verify whether it is the real transition states that connect the corresponding intermediates. Single-point calculations were carried out on the previous optimized geometries obtained during IRC calculations. The activation energies have also been calculated using G3MP2//B3LYP/6-311G(d,p) method. The water molecules attack the adenine and a tetrahedral intermediate forms. Then, two different intermediates have been obtained through different bond rotations. In pathway a, the second water molecule takes part in the formation of transition state and acts as a bridge to transfer hydrogen atom, while in pathway b, the second water molecule does not involve in the creation of transition state and only acts as a medium. The energy barriers are 23.40 and 37.17 kcal/mol for pathways a and b, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Glaser R, Rayat S, Lewis M, Son MS, Meyer S (1999) J Am Chem Soc 121:6108–6119

    Article  CAS  Google Scholar 

  2. Almatarneh MH, Flinn CG, Poirier RA, Sokalski WA (2006) J Phys Chem A 110:8227–8234

    Article  CAS  Google Scholar 

  3. Labet V, Morell C, Grand A, Toro-Labbé A (2008) J Phys Chem A 112:11487–11494

    Article  CAS  Google Scholar 

  4. Zhang A, Yang B, Li Z (2007) J Mol Struct (Theochem) 819:95–101

    Article  CAS  Google Scholar 

  5. Almatarneh MH, Flinn CG, Poirier RA (2008) J Chem Inf Model 48:831–843

    Article  CAS  Google Scholar 

  6. Zhu C, Meng FC (2009) Struct Chem 20:685–691

    Article  CAS  Google Scholar 

  7. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  8. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  9. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  10. Baboul AG, Curtiss LA, Redfern PC (1999) J Chem Phys 110:7650–7657

    Article  CAS  Google Scholar 

  11. Curtiss LA, Raghavachari K (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  12. Tang YZ, Sun JY, Sun H, Pan YR, Wang RS (2008) Theor Chem Acc 119:297–303

    Article  CAS  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskortz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  14. Toro-Labbé A (1999) J Phys Chem A 103:4398–4403

    Article  Google Scholar 

  15. Rincón E, Toro-Labbé A (2007) Chem Phys Lett 438:93–98

    Article  Google Scholar 

  16. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439–10452

    Article  CAS  Google Scholar 

  17. Labet V, Morell C, Cadet J, Eriksson LA, Grand A (2009) J Phys Chem A 113:2524–2533

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the basic research sustentation fund of cosmetics in vitro toxicology study from Chinese Academy of Inspection and Quarantine (No. 2007JK017) and Ph.D. foundation of Shandong Province (No. 2008BS02014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fancui Meng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 2156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H., Meng, F. Theoretical study of water-assisted hydrolytic deamination mechanism of adenine. Struct Chem 20, 943–949 (2009). https://doi.org/10.1007/s11224-009-9495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9495-z

Keywords

Navigation