Skip to main content
Log in

Theoretical study on the hydrolytic deamination mechanism of adenosine

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The hydrolytic deamination mechanism of adenosine to produce inosine was studied using density functional method on two models. One is adenine and the other is adenosine. Optimized geometries of reactants, intermediates, transition states, and products were determined at B3LYP/6-311G(d,p) level. IRC calculations were performed on the transition states to verify whether it is the real transition state that connects the corresponding intermediates. Single point calculations were carried out on the previous optimized geometries obtained during IRC calculations. Four pathways have been determined for the hydrolytic deamination of adenosine. Pathway d is the most favorable pathway. In this pathway a tetra-coordinated intermediate is formed through hydrolysis reaction, then the deamination reaction takes place, which causes the cleavage of C6–N10 bond and the creation of C=O bond. Unlike the deamination of adenine, the attacking side of water molecule has effect on the deamination of adenosine. The energy barriers of adenosine deamination are a little higher than those of adenine deamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Glaser R, Rayat S, Lewis M, Son M-S, Meyer S (1999) J Am Chem Soc 121:6108–6119. doi:10.1021/ja9841254

    Article  CAS  Google Scholar 

  2. Almatarneh MH, Flinn CG, Poirier RA, Sokalski WA (2006) J Phys Chem A 110:8227–8234. doi:10.1021/jp062300u

    Article  CAS  Google Scholar 

  3. Labet V, Morell C, Grand A, Toro-Labbé A (2008) J Phys Chem A 112:11487–11494. doi:10.1021/jp8059097

    Article  CAS  Google Scholar 

  4. Zhang A, Yang B, Li Z (2007) J Mol Struct THEOCHEM 819:95–101. doi:10.1016/j.theochem.2007.05.028

    Article  CAS  Google Scholar 

  5. Almatarneh MH, Flinn CG, Poirier RA (2008) J Chem Inf Model 48:831–843. doi:10.1021/ci7003219

    Article  CAS  Google Scholar 

  6. Becke AD (1993) J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  7. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  8. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206. doi:10.1016/0009-2614(89)87234-3

    Article  CAS  Google Scholar 

  9. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918. doi:10.1021/jp048147q

    Article  CAS  Google Scholar 

  10. Baboul AG, Curtiss LA, Redfern PC (1999) J Chem Phys 110:7650–7657. doi:10.1063/1.478676

    Article  CAS  Google Scholar 

  11. Curtiss LA, Raghavachari K (1998) J Chem Phys 109:7764–7776. doi:10.1063/1.477422

    Article  CAS  Google Scholar 

  12. Tang Y-Z, Sun J-Y, Sun H, Pan Y-R, Wang R-S (2008) Theor Chem Acc 119:297–303. doi:10.1007/s00214-007-0383-6

    Article  CAS  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskortz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian Inc., Wallingford, CT

  14. Matsubara T, Dupuis M, Aida M (2007) J Phys Chem B 111:9965–9974. doi:10.1021/jp072732k

    Article  CAS  Google Scholar 

  15. Fuentes-Cabrera M, Sumpter BG, Šponer JE, Šponer J, Petit L, Wells JC (2007) J Phys Chem B 111:870–879. doi:10.1021/jp066465e

    Article  CAS  Google Scholar 

  16. Liu H, Gauld JW (2008) J Phys Chem B 112:16874–16882

    Article  CAS  Google Scholar 

  17. Close DM, Crespo-Hernández CE, Gorb L, Leszczynski J (2008) J Phys Chem A 112:12702–12706. doi:10.1021/jp807265y

    Article  CAS  Google Scholar 

  18. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439–10452. doi:10.1021/jp0734474

    Article  CAS  Google Scholar 

  19. Labet V, Morell C, Cadet J, Eriksson LA, Grand A (2009) J Phys Chem A 113:2524–2533. doi:10.1021/jp808902j

    Article  CAS  Google Scholar 

  20. Luo M, Schramm VL (2008) J Am Chem Soc 130:2649–2655. doi:10.1021/ja078008x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Scientific Research Reward Fund for Excellent Young and Middle-Aged Scientists of Shandong Province (Grant No. 2008BS02014) and Postdoctoral Science foundation of Shandong Province (Grant No. 200703077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fancui Meng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, C., Meng, F. Theoretical study on the hydrolytic deamination mechanism of adenosine. Struct Chem 20, 685–691 (2009). https://doi.org/10.1007/s11224-009-9461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9461-9

Keywords

Navigation