Skip to main content
Log in

A comparative study to predict regioselectivity, electrophilicity and nucleophilicity with Fukui function and Hirshfeld charge

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Chemical reactivity properties such as regioselectivity, electrophilicity and nucleophilicity are important chemical concepts, yet their understanding and quantification are still far from being accomplished. Applying density functional theory (DFT) to appreciate these properties is one route to pursue in the literature. In this work, we present a comparative study to benchmark two approaches in DFT to predict regioselectivity, electrophilicity and nucleophilicity: one with the Hirshfeld charge and the other with the Fukui function. We also examine the impact of 15 different ways to compute atomic charges on the performance of their predictions about these chemical reactivity properties. Our results show that the Hirshfeld charge is able to reliably determine regioselectivity and simultaneously accurately quantify both electrophilicity and nucleophilicity. The Fukui function behaves reasonably well for the prediction of electrophilicity but performs poorly for nucleophilicity. Among all other atomic charges examined in this study, it is only the Voronoi deformation density charge that yields the similar result as the Hirshfeld charge. As the first systematic benchmark study in the literature to compare the two available approaches in DFT about reactivity predictions, this work should fill in the needed knowledge gap and provide an impetus for the future development of chemical reactivity theory using DFT language.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parr RG, Szentpály LV, Liu S (1999) J Am Chem Soc 121(9):1922–1924

    CAS  Google Scholar 

  2. Jaramillo P, Pérez P, Contreras R, Tiznado W, Fuentealba P (2006) J Phys Chem A 110(26):8181–8187

    CAS  PubMed  Google Scholar 

  3. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101(5):520–534

    CAS  Google Scholar 

  4. Ayers PW, Anderson JSM, Rodriguez JI, Jawed Z (2005) Phys Chem Chem Phys 7(9):1918–1925

    CAS  PubMed  Google Scholar 

  5. Chattaraj PK, Roy DR (2006) J Phys Chem A 110(40):11401–11403

    CAS  PubMed  Google Scholar 

  6. Chattaraj PK (2001) J Phys Chem A 105(2):511–513

    CAS  Google Scholar 

  7. Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure. Wiley, New York

    Google Scholar 

  8. Baldwin JE (1976) J Chem Soc. Chem Commun 18:734–736

    Google Scholar 

  9. Fürst A, Plattner PA (1949) Helv Chim Acta 32(1):275–283

    PubMed  Google Scholar 

  10. Yang W, Parr RG (1985) Proc Nat Acad Sci USA 82(20):6723–6726

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10(21):3028–3042

    CAS  PubMed  Google Scholar 

  12. Parr RG, Yang W (1984) J Am Chem Soc 106(14):4049–4050

    CAS  Google Scholar 

  13. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  14. Nalewajski RF, Parr RG (2001) J Phys Chem A 105(31):7391–7400

    CAS  Google Scholar 

  15. Parr RG, Ayers PW, Nalewajski RF (2005) J Phys Chem A 109(17):3957–3959

    CAS  PubMed  Google Scholar 

  16. Ayers PW (2006) Theor Chem Acc 115(5):370–378

    CAS  Google Scholar 

  17. Kullback S (2012) Information theory and statistics. Dover Publications, New York

    Google Scholar 

  18. Nalewajski RF (2006) Information theory of molecular systems. Elsevier Science, Amsterdam

    Google Scholar 

  19. Liu S, Rong C, Lu T (2014) J Phys Chem A 118(20):3698–3704

    CAS  PubMed  Google Scholar 

  20. Mayr H, Patz M (1994) Angew Chem Int Ed 33(9):938–957

    Google Scholar 

  21. Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H (2001) J Am Chem Soc 123(39):9500–9512

    CAS  PubMed  Google Scholar 

  22. Lucius R, Loos R, Mayr H (2002) Angew Chem Int Ed 41(1):91–95

    CAS  Google Scholar 

  23. Mayr H, Kempf B, Ofial AR (2003) Acc Chem Res 36(1):66–77

    CAS  PubMed  Google Scholar 

  24. Hirshfeld FL (1977) Theor Chim Acta 44(2):129–138

    CAS  Google Scholar 

  25. Fonseca Guerra C, Handgraaf J-W, Baerends EJ, Bickelhaupt FM (2004) J Comput Chem 25(2):189–210

    PubMed  Google Scholar 

  26. Mulliken RS (1955) J Chem Phys 23(10):1833–1840

    CAS  Google Scholar 

  27. Mulliken RS (1955) J Chem Phys 23(10):1841–1846

    CAS  Google Scholar 

  28. Mulliken RS (1955) J Chem Phys 23(12):2338–2342

    CAS  Google Scholar 

  29. Bruhn G, Davidson ER, Mayer I, Clark AE (2006) Int J Quantum Chem 106(9):2065–2072

    CAS  Google Scholar 

  30. Ros P, Schuit G (1966) Theor Chim Acta 4(1):1–12

    CAS  Google Scholar 

  31. Stout E, Politzer P (1968) Theor Chim Acta 12(5):379–386

    CAS  Google Scholar 

  32. Bickelhaupt FM, Van Eikema Hommes NJR, Fonseca Guerra C, Baerends EJ (1996) Organometallics 15(13):2923–2931

    CAS  Google Scholar 

  33. Becke AD (1988) J Chem Phys 88(4):2547–2553

    CAS  Google Scholar 

  34. Lu T, Chen F (2012) J Theor Comput Chem 11(01):163–183

    CAS  Google Scholar 

  35. Breneman CM, Wiberg KB (1990) J Comput Chem 11(3):361–373

    CAS  Google Scholar 

  36. Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11(4):431–439

    CAS  Google Scholar 

  37. Bader RFW (1985) Acc Chem Res 18(1):9–15

    CAS  Google Scholar 

  38. Bultinck P, Alsenoy CV, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 126(14):144111

    PubMed  Google Scholar 

  39. Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) J Chem Theor Comput 8(2):527–541

    CAS  Google Scholar 

  40. Mortier WJ, Van Genechten K, Gasteiger J (1985) J Am Chem Soc 107(4):829–835

    CAS  Google Scholar 

  41. Ayers PW, Levy M (2000) Theor Chem Acc 103(3):353–360

    CAS  Google Scholar 

  42. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    CAS  PubMed  Google Scholar 

  43. Bultinck P, Fias S, Alsenoy CV, Ayers PW, Carbo-Dora R (2007) J Chem Phys 127:034102

    PubMed  Google Scholar 

  44. Miranda-Quintana RA (2016) Chem Phys Lett 658:328–330

    CAS  Google Scholar 

  45. Nalewajski RF (2000) Parr RG 97(16):8879–8882

    CAS  Google Scholar 

  46. Matta CF, Sichinga M, Ayers PW (2011) Chem Phys Lett 514(4):379–383

    CAS  Google Scholar 

  47. Rong C, Lu T, Liu SB (2014) J Chem Phys 140(2):024109

    PubMed  Google Scholar 

  48. Cao X, Rong C, Zhong A, Lu T, Liu SB (2018) J Comput Chem 39(2):117–129

    CAS  PubMed  Google Scholar 

  49. Liu SB, Liu L, Yu D, Rong C, Lu T (2018) Phys Chem Chem Phys 20(3):1408–1420

    CAS  PubMed  Google Scholar 

  50. Liu SB, Rong C, Lu T, Hu H (2018) J Phys Chem A 122(11):3087–3095

    CAS  PubMed  Google Scholar 

  51. Rong C, Zhao D, Yu D, Liu SB (2018) Phys Chem Chem Phys 20(26):17990–17998

    CAS  PubMed  Google Scholar 

  52. Rong C, Zhao D, Zhou T, Liu S, Yu D, Liu SB (2019) J Phys Chem Lett 10(8):1716–1721

    CAS  PubMed  Google Scholar 

  53. Liu S, Zhao D, Rong C, Lu T, Liu SB (2019) J Chem Phys 150(20):204106

    PubMed  Google Scholar 

  54. Wang B, Yu D, Zhao D, Rong C, Liu SB (2019) Chem Phys Lett 730:451–459

    CAS  Google Scholar 

  55. Wu J, Yu D, Liu S, Rong C, Zhong A, Chattaraj PK, Liu SB (2019) J Phys Chem A 123(31):6751–6760

    CAS  PubMed  Google Scholar 

  56. Xiao X, Cao X, Zhao D, Rong C, Liu S (2019) Acta Phys Chim Sin. https://doi.org/10.3866/PKU.WHXB201906034

    Article  Google Scholar 

  57. Yu D, Rong C, Lu T, Chattaraj PK, De Proft F, Liu SB (2017) Phys Chem Chem Phys 19(28):18635–18645

    CAS  PubMed  Google Scholar 

  58. Yu D, Rong C, Lu T, De Proft F, Liu SB (2018) ACS Omega 3(12):18370–18379

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu D, Rong C, Lu T, De Proft F, Liu SB (2018) Acta Phys-Chim Sin 34(6):639–649

    CAS  Google Scholar 

  60. Yu D, Stuyver T, Rong C, Alonso M, Lu T, De Proft F, Geerlings P, Liu SB (2019) Phys Chem Chem Phys 21(33):18195–18210

    CAS  PubMed  Google Scholar 

  61. Zhao D, Liu S, Rong C, Zhong A, Liu SB (2018) ACS Omega 3(12):17986–17990

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou T, Liu S, Yu D, Zhao D, Rong C, Liu SB (2019) Chem Phys Lett 716:192–198

    CAS  Google Scholar 

  63. Liu SB, Rong C, Lu T (2014) J Phys Chem A 118(20):3698–3704

    CAS  PubMed  Google Scholar 

  64. Zhou X, Rong C, Lu T, Liu SB (2014) Acta Phys Chim Sin 30(11):2055–2062

    CAS  Google Scholar 

  65. Liu SB (2016) Acta Phys Chim Sin 32(1):98–118

    Google Scholar 

  66. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54(2):724–728

    CAS  Google Scholar 

  67. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120(1):215–241

    CAS  Google Scholar 

  68. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, Revision D.01, Gaussian Inc. Wallingford CT

  69. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24(6):669–681

    CAS  PubMed  Google Scholar 

  70. Lu T, Chen F (2012) J Comput Chem 33(5):580–592

    PubMed  Google Scholar 

Download references

Acknowledgements

C.R. acknowledges support from the National Natural Science Foundation of China (No. 21503076), Scientific Research Fund of Hunan Provincial Education Department (No. 17C0949) and Hunan Provincial Natural Science Foundation of China (Grant No. 2017JJ3201). P.K.C. would like to thank the DST, New Delhi for the J. C. Bose National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the Chemical Concepts from Theory and Computation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Rong, C., Chattaraj, P.K. et al. A comparative study to predict regioselectivity, electrophilicity and nucleophilicity with Fukui function and Hirshfeld charge. Theor Chem Acc 138, 124 (2019). https://doi.org/10.1007/s00214-019-2515-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2515-1

Keywords

Navigation