Skip to main content
Log in

Conformational stability, r 0 structural parameters, barriers to internal rotation, ab initio calculations, and vibrational assignment for 2,2-difluoroethanol

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The infrared spectra (4,000–30 cm−1) of the gas and solid and the Raman spectrum of liquid 2,2-difluoroethanol as well as variable temperature infrared spectra of krypton/xenon solutions have been recorded. From all these data, two (Gg and Tg) out of the five possible stable conformers have been confidently identified. The order of the stabilities has been predicted to be Gg > Tg > Gt > Gg′ > Tt by utilizing ab initio MP2 (full) and DFT (B3LYP method) calculations, where the first indicator (capital letter) is in reference to rotation around the C–C bond (G = gauche or T = trans) and the second one (small letter) refers to the orientation of the hydroxyl group. The percentage of the minor conformer Tg, at ambient temperature, is estimated to be (16 ± 3%). The optimized geometries, fundamental frequencies, infrared intensities, Raman activities, and depolarization values as well as centrifugal distortion constants have been obtained from ab initio and density functional theory calculations by utilizing a variety of basis sets as well as those with diffuse functions. By utilizing the previously reported microwave rotational constants for two isotopomers of the Gg conformer combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r 0 parameters have been obtained. The determined heavy atom distances (Å) for the Gg conformer are: C1–C2 = 1.510(3), C2–F4 = 1.371(3), C2–F5 = 1.362(3), C1–O3 = 1.412(3) Å and angles ∠O3C1C2 = 111.0(5), ∠F4C2C1 = 108.8(5), ∠F5C2C1 = 109.8(5), τF4C2C1O3 = 63.5(5), τF5C2C1O3 = 179.1(5)°. Barriers of internal rotation have been obtained and vibrational assignments for the Gg and Tg conformers are given. The five predicted centrifugal distortion constants compared to the experimental values are in reasonable agreement except for ∆K, which appears to be in error. The results are discussed and the structural parameters compared to the corresponding ones for 2-fluoroethanol and 2,2,2-trifluoroethanol where those for the latter molecule have been redetermined. The currently determined heavy atom parameters are quite different from the earlier assumed values, which led to poor values of the six adjusted parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sellevag SR, Nielsen CJ, Søvde OA, Myhre G, Sundet JK, Stordal F, Isaken SAI (2004) Atmos Environ 38:6725. doi:10.1016/j.atmosenv.2004.09.023

    Article  CAS  Google Scholar 

  2. Vaynberg J, Ng LM (2005) Surf Sci 577:175. doi:10.1016/j.susc.2004.12.031

    Article  CAS  Google Scholar 

  3. Perttila M (1979) Spectrochim Acta A 35A:37. doi:10.1016/0584-8539(79)80062-8

    Article  CAS  Google Scholar 

  4. Marstokk KM, Møllendal H (1980) Acta Chem Scand A 34:765. doi:10.3891/acta.chem.scand.34a-0765

    Article  Google Scholar 

  5. Durig JR, Ganguly A, El Defrawy AM, Gounev TK, Guirgis GA (2008) Spectrochim Acta A 71A:1379. doi:10.1016/j.saa.2008.04.010

    CAS  Google Scholar 

  6. Durig JR, Ganguly A, El Defrawy AM, Zheng C, Badawi HM, Herrebout WA, van Veken BJ, Guirgis GA, Gounev TK (2009) J Mol Struct. doi:10.1016/j.molstruc.2009.01.014

  7. Wei L, Ganguly A, Minei AJ, Lindeke GL, Pringle WC, Novick SE, Durig JR (2009) J Mol Struct. doi:10.1016/j.molstruc.2009.01.040

  8. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision E.01. Gaussian, Inc., Wallingford, CT

  9. Pulay P (1969) Mol Phys 17:197. doi:10.1080/00268976900100941

    Article  CAS  Google Scholar 

  10. Møller C, Plesset MS (1934) Phys Rev 46:618. doi:10.1103/PhysRev.46.618

    Article  Google Scholar 

  11. Guirgis GA, Zhu X, Yu Z, Durig JR (2000) J Phys Chem A 104:4383. doi:10.1021/jp993430o

    Article  CAS  Google Scholar 

  12. Chantry GW (1971) The Raman effect, vol 2. Marcel Dekker Inc., New York, NY

    Google Scholar 

  13. Frisch MJ, Yamaguchi Y, Gaw JF, Schaefer HFIII, Binkley JS (1986) J Chem Phys 84:531. doi:10.1063/1.450121

    Article  CAS  Google Scholar 

  14. Amos RD (1986) Chem Phys Lett 124:376. doi:10.1016/0009-2614(86)85037-0

    Article  CAS  Google Scholar 

  15. Polavarapu PL (1990) J Phys Chem 94:8106. doi:10.1021/j100384a024

    Article  CAS  Google Scholar 

  16. Durig JR, Ng KW, Zheng C, Shen S (2004) Struct Chem 15:149. doi:10.1023/B:STUC.0000011249.33964.2c

    Article  CAS  Google Scholar 

  17. McKean DC (1984) J Mol Struct 113:251. doi:10.1016/0022-2860(84)80149-0

    Article  CAS  Google Scholar 

  18. Van der Veken BJ, Herrebout WA, Durig DT, Zhao W, Durig JR (1999) J Phys Chem A 103:1976. doi:10.1021/jp9835162

    Article  Google Scholar 

  19. Perttila M, Murto J, Kivinen A, Turunen K (1978) Spectrochim Acta A 34A:9. doi:10.1016/0584-8539(78)80178-0

    Article  CAS  Google Scholar 

  20. Xu L-H, Fraser GT, Lovas FJ, Suenram RD, Gillies CW, Warner HE, Gillies JZ (1995) J Chem Phys 103:9541. doi:10.1063/1.469968

    Article  CAS  Google Scholar 

  21. Beagley B, Jones MO, Zanjanchi MA (1979) J Mol Struct 56:215. doi:10.1016/0022-2860(79)80158-1

    Article  CAS  Google Scholar 

  22. Culot JP (1972) Fourth Austin symposium on gas phase molecular structure, Austin, Texas, Paper T8

  23. Huang J, Hedberg K (1989) J Am Chem Soc 111:6909. doi:10.1021/ja00200a003

    Article  CAS  Google Scholar 

  24. Buckton KS, Azrak RG (1970) J Chem Phys 52:5652. doi:10.1063/1.1672840

    Article  CAS  Google Scholar 

  25. Nygaard L (1966) Spectrochim Acta A 22:1261

    Article  CAS  Google Scholar 

  26. Azrak RG, Wilson EB (1970) J Chem Phys 52:5299. doi:10.1063/1.1672779

    Article  CAS  Google Scholar 

Download references

Acknowledgment

JRD acknowledges the University of Missouri–Kansas City for a Faculty Research Grant for partial financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Durig.

Additional information

Taken from the thesis of Arindam Ganguly, which will be submitted in partial fulfillment of the Ph.D. degree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durig, J.R., Ganguly, A., Guirgis, G.A. et al. Conformational stability, r 0 structural parameters, barriers to internal rotation, ab initio calculations, and vibrational assignment for 2,2-difluoroethanol. Struct Chem 20, 489–503 (2009). https://doi.org/10.1007/s11224-009-9446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9446-8

Keywords

Navigation