Skip to main content
Log in

X-ray Crystal and Ab Initio Structures of 3′,5′-di-O-Acetyl-N(4)-Hydroxy-2′-Deoxycytidine and Its 5-Fluoro Analogue: Models of the N(4)-OH-dCMP and N(4)-OH-FdCMP Molecules Interacting with Thymidylate Synthase

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystal and molecular structures of the 3′,5′-di-O-acetyl-N(4)-hydroxy-2′-deoxycytidine molecule and its 5-fluoro congener have been determined by X-ray single crystal diffraction. The 3′,5′-di-O-acetyl-N(4)-hydroxy-5-fluoro-2′-deoxycytidine molecule crystallizes in the space group C2 with the following unit cell parameters: a = 21.72 Å, b = 8.72 Å, c = 8.61 Å, and β = 90.42. 3′,5′-di-O-acetyl-N(4)-hydroxy-2′-deoxycytidine also belongs to the monoclinic space group C2 and the unit cell parameters are: a = 39.54 Å, b = 8.72 Å, c = 22.89 Å, and β = 95.26. The non-fluorine analogue demonstrates a rare example of crystal structure with five symmetry-independent molecules in the unit cell. All the molecules in both crystal structures have the sugar residue anti oriented with respect to the base, as well as have the N(4)-OH residue in cis conformation relatively to the N(3)-nitrogen atom. In addition to the molecular geometries from X-ray experiment, the optimized molecular geometries have been obtained with the use of theoretical ab initio calculations at the RHF/6-31G(d) level. The corresponding geometric parameters in the molecules of 3′,5′-di-O-acetyl-N(4)-hydroxy-2′-deoxycytidine and its 5-fluoro congener have been compared. The differences including the C(5)=C(6) bond shortening and C(4)—C(5)—C(6) angle widening in the fluorine analogue are discussed in this paper in relation to the molecular mechanism of enzyme, thymidylate synthase, inhibition by N(4)-hydroxy-2′-deoxycytidine monophosphate and its 5-fluoro congener.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Santi, D. V.; Danenberg, P. V. In Folates and Pterines; Blakely, R.~L.; Benkovic, S. J., Eds.; Wiley: New York, 1984; Vol. 1, Chemistry and Biochemistry of Folates; pp. 345–398.

  2. Carreras, C. W.; Santi, D. V. Annu. Rev. Biochem. 1995, 64, 721.

    Article  PubMed  Google Scholar 

  3. Stroud, R. M.; Finer-Moore, J. S. Biochemistry 2003, 42, 239.

    Article  PubMed  Google Scholar 

  4. Finer-Moore, J. S.; Santi, D. V.; Stroud, R. M. Biochemistry 2003, 42, 248.

    Article  PubMed  Google Scholar 

  5. Danenberg, P. V. Biochim. Biophys. Acta 1977, 473, 73.

    PubMed  Google Scholar 

  6. Heidelberger, C.; Danenberg, P. V.; Moran, R. G. Adv. Enzymol. 1983, 54, 57.

    Google Scholar 

  7. Jackman, A. L.; Jones, T. R.; Calvert, A. H.; In Experimental and Clinical Progress in Cancer Chemotherapy; Muggia, F. M., Ed.; Martinus Nijhoff Publishers: Boston, 1985; pp. 155–210.

  8. Ealick, S. E.; Armstrong, S. R. Curr. Opin. Struct. Biol. 1993, 3, 861.

    Article  Google Scholar 

  9. Lewis, C. A., Jr.; Dunlap, R. B. In Topics in Molecular Pharmacology; Burgen, A. S. V.; Roberts, G. C. K., Eds.; Elsevier/North-Holland Biomedical: New York, 1981; pp. 170–219.

  10. Santi, D. V. J. Med. Chem. 1980, 23, 103.

    Article  PubMed  Google Scholar 

  11. De Clercq, E.; Balzarini, J.; Torrence, P. F.; Mertes, M. P.; Schmidt, C. L.; Shugar, D.; Barr, P. J.; Jones, A. S.; Verhelst, G.; Walker, R. T. Mol. Pharmacol. 1981, 19, 321.

    PubMed  Google Scholar 

  12. Hartman, K. R.; Heidelberger, C. J. Biol. Chem. 1958, 236, 3006.

    Google Scholar 

  13. Heidelberger, C. Prog. Nucl. Acid Res. Mol. Biol. 1965, 4, 1.

    Google Scholar 

  14. Rode, W.; Zieliński, Z.; Dzik, J. M.; Kulikowski, T.; Bretner, M.; Kierdaszuk, B.; Cieśla, J.; Shugar, D. Biochemistry 1990, 29, 10835.

    Article  PubMed  Google Scholar 

  15. Lorenson, M. Y.; Maley, G. F.; Maley, F. J. Biol. Chem. 1967, 242, 3332.

    PubMed  Google Scholar 

  16. Goldstein, S.; Pogolotti, A. L.; Garvey, E. P., Jr.; Santi, D. V. J. Med. Chem. 1984, 27, 1259.

    Article  PubMed  Google Scholar 

  17. Leś, A.; Adamowicz, L.; Rode, W. Biochim. Biophys. Acta 1993, 1173, 39.

    PubMed  Google Scholar 

  18. Felczak, K.; Miazga, A.; Poznański, J.; Bretner, M.; Kulikowski, T.; Dzik, J. M.; Gołos, B.; Zieliński, Z.; Cieśla, J.; Rode, W. J. Med. Chem. 2000, 43, 4647.

    Article  PubMed  Google Scholar 

  19. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467.

    Google Scholar 

  20. Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; University of Gottingen: Germany, 1997; Release 97-2.

  21. Wilson, A. J. C., Ed. International Tables for Crystallography; Kluwer Academic Publishers: Dordrecht, 1992; Volume C.

  22. Kissel, L. P.; Pratt, R. H. Acta Crystallogr. 1990, A46, 170.

    Google Scholar 

  23. Cromer, D. T. J. Appl. Crystallogr. 1983, 16, 437.

    Article  Google Scholar 

  24. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.

    Article  Google Scholar 

  25. Allen, F. H.; Johnson, O.; Shields, G. P.; Smith, B. R.; Towler, M. J. Appl. Crystallogr. 2004, 37, 335.

    Article  Google Scholar 

  26. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565.

    Article  Google Scholar 

  27. ISIS/Draw; MDL Information Systems, Inc., 1990–2001; Ver. 2.4.

  28. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347.

    Article  Google Scholar 

  29. Niedźwiecka-Hornaś, A.; Kierdaszuk, B.; Stolarski, R.; Shugar, D. Biophys. Chem. 1998, 71, 87.

    Article  Google Scholar 

  30. Shugar, D.; Huber, C. P.; Birnbaum, G. I. Biochim. Biophys. Acta 1976, 447, 274.

    PubMed  Google Scholar 

  31. Stepanenko, T.; Lapinski, L.; Sobolewski, A. L.; Nowak, M. J.; Kierdaszuk, B. J. Phys. Chem. A 2000, 104, 9459.

    Article  Google Scholar 

  32. Jarmuła, A.; Anulewicz, R.; Leś, A.; Cyrański, M. K.; Adamowicz, L.; Bretner, M.; Felczak, K.; Kulikowski, T.; Krygowski, T. M.; Rode, W. Biochim. Biophys. Acta 1998, 1382, 277.

    PubMed  Google Scholar 

  33. Walsh, A. D. Discuss. Faraday Soc. 1947, 2, 18.

    Article  Google Scholar 

  34. Bent, H. A. Chem. Rev. 1961, 61, 275.

    Article  Google Scholar 

  35. Bent, H. A. J. Inorg. Nucl. Chem. 1961, 19, 43.

    Article  Google Scholar 

  36. Gillespie, R. J.; Nyholm, R. S. Quart. Rev. 1957, 11, 339.

    Article  Google Scholar 

  37. Gillespie, R. J. Molecular Geometry; Van-Nostrand-Reinhold: London, 1972.

    Google Scholar 

  38. Gillespie, R. J.; Hargittai, I. In The VSEPR Model of Molecular Geometry; Allyn & Bacon: Needham Heights, MA, 1991.

    Google Scholar 

  39. Jarmuła, A.; Cyrański, M. K.; Leś, A.; Krygowski, T. M.; Rode, W. Pol. J. Chem. 1998, 72, 1958.

    Google Scholar 

  40. Matthews, D. A.; Villafranca, J. E.; Janson, C. A.; Smith, W. W.; Welsh, K.; Freer, S. J. Mol. Biol. 1990, 214, 937.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Jarmuła.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarmuła, A., Rypniewski, W.R., Felczak, K. et al. X-ray Crystal and Ab Initio Structures of 3′,5′-di-O-Acetyl-N(4)-Hydroxy-2′-Deoxycytidine and Its 5-Fluoro Analogue: Models of the N(4)-OH-dCMP and N(4)-OH-FdCMP Molecules Interacting with Thymidylate Synthase. Struct Chem 16, 541–549 (2005). https://doi.org/10.1007/s11224-005-6058-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-005-6058-9

Keywords

Navigation