Skip to main content
Log in

Structural and Functional Analysis of Pyrimidine Nucleoside Phosphorylases of the NP-I and NP-II Families in Complexes with 6-Methyluracil

  • Structure of Macromolecular Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The structure of bacterial uridine phosphorylase (UPh) belonging to the NP-I family in complex with 6-methyluracil was determined for the first time at 1.17 Å resolution. The structural features of bacterial UPh from the bacterium Vibrio cholerae (VchUPh) responsible for selectivity toward 6-methyluracil acting as a pseudosubstrate were revealed. The repulsion between the hydrophilic hydroxyl group of the active-site residue Thr93 of VchUPh and the hydrophobic methyl group of 6-methyluracil prevents the oxygen atom O4' of the ribose moiety and the phosphate oxygen atom O3P of ribose 1-phosphate from forming hydrogen bonds with OG1_Thr93, which are essential for the enzymatic reaction. This, apparently, makes VchUPh inactive in the enzymatic synthesis of 6-methyluridine from 6-methyluracil. Hence, Thr93 is the residue, the modification of which will allow VchUPh to catalyze the biotechnologically important synthesis of 6-methyluridine from 6-methyluracil. Taking into account high structural homology of the functionally significant regions of bacterial UPhs, this conclusion is also true for other bacterial UPhs. It was demonstrated that bacterial thymidine phosphorylases of the NP-II family cannot bind 6-methyluracil in a proper conformation required for the catalysis because of a close contact between the 6-methyl group and Phe210.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Chadaev and A. D. Klimiashvili, Khirurgiia (Mosk), No. 1, 54 (2003).

    Google Scholar 

  2. J. el-On and L. Weinrauch, Int. J. Dermatol. 29 (3), 232 (1990).

    Article  Google Scholar 

  3. V. V. Ganzhii, Klin. Khir., No. 11–12, 18 (2002).

    Google Scholar 

  4. M. Gerasimenko, E. V. Vasil’eva, E. V. Kuvshinov, et al., Vopr. Kurortol. Fizioter. Lech. Fiz. Kult., No. 3, 12 (2002).

    Google Scholar 

  5. K. A. Petrov, L. O. Yagodina, G. R. Valeeva, et al., Br. J. Pharmacol. 163 (4), 732 (2011).

    Article  Google Scholar 

  6. Iu. P. Taran and L. N. Shishkina, Radiobiologiia 33 (2), 285 (1993).

    Google Scholar 

  7. K. Felczak, A. K. Drabikowska, J. A. Vilpo, et al., J. Med. Chem. 39 (8), 1720 (1996).

    Article  Google Scholar 

  8. J. C. Leer, K. Hammer-Jespersen, and M. Schwartz, Eur. J. Biochem. 75 (1), 217 (1977).

    Article  Google Scholar 

  9. O. H. Temmink, M. de Bruin, A. W. Turksma, et al., Int. J. Biochem. Cell. Biol. 39 (3), 565 (2007).

    Article  Google Scholar 

  10. S. Watanabe and T. Uchida, Biochem. Biophys. Res. Commun. 216 (1), 265 (1995).

    Article  Google Scholar 

  11. P. W. Woodman, A. M. Sarrif, and C. Heidelberger, Cancer. Res. 40 (3), 507 (1980).

    Google Scholar 

  12. E. Krajewska and D. Shugar, Biochem. Pharmacol. 31 (6), 1097 (1982).

    Article  Google Scholar 

  13. A. A. Lashkov, A. G. Gabdulkhakov, I. I. Prokofev, et al., Acta Crystallogr. F. 68 (11), 1394 (2012).

    Article  Google Scholar 

  14. Prokofev, A. A. Lashkov, A. G. Gabdulkhakov, et al., Acta Crystallogr. F. 70 (1), 60 (2014).

    Article  Google Scholar 

  15. M. Zolotukhina, I. Ovcharova, S. Eremina, et al., Res. Microbiol. 154 (7), 510 (2003).

    Article  Google Scholar 

  16. I. I. Lashkov, A. A. Prokof’ev, A. G. Gabdulkhakov, et al., Crystallogr. Rep. 61 (6), 954 (2016).

    Article  ADS  Google Scholar 

  17. W. Kabsch, Integration, Scaling, Space-Group Assignment and Post Refinement. XDS, in International Tables for Crystallography, Ed. by M. G. Rossmann and E. Arnold, (Kluwer, Dordrecht, 2001).

  18. A. Vagin and A. Teplyakov, J. Appl. Crystallogr. 30 (6), 1022 (1997).

    Article  Google Scholar 

  19. G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Acta Crystallogr. D 53 (3), 240 (1997).

    Article  Google Scholar 

  20. P. D. Adams, P. V. Afonine, G. Bunkoczi, et al., Acta Crystallogr. D 66 (2), 213 (2010).

    Article  Google Scholar 

  21. P. V. Afonine, R. W. Grosse-Kunstleve, N. Echols, et al., Acta Crystallogr. D 68 (4), 352 (2012).

    Article  Google Scholar 

  22. P. Emsley and K. Cowtan, Acta Crystallogr. D60 (12), Part 1, 2126 (2004).

    Article  Google Scholar 

  23. P. Emsley, B. Lohkamp, W. G. Scott, et al., Acta Crystallogr. D 66 (4), 486 (2010).

    Article  Google Scholar 

  24. I. W. Davis, A. Leaver-Fay, V. B. Chen, et al., Nucl. Acids Res. 35 (Web Server issue), W375 (2007).

  25. M. A. Larkin, G. Blackshields, N. P. Brown, et al., Bioinformatics 23 (21), 2947 (2007).

    Article  Google Scholar 

  26. X. Robert and P. Gouet, Nucl. Acids Res. 42 (Web Server issue), W230 (2014).

    Article  Google Scholar 

  27. W. L. Delano The PyMOL Molecular Graphics System (2002). http://www.pymol.orgciteulike-article-id:2816763.

    Google Scholar 

  28. A. C. Wallace, R. A. Laskowski, and J. M. Thornton, Protein Sci. 5 (6), 1001 (1996).

    Article  Google Scholar 

  29. Maestro, in Book Maestro (Schrödinger, LLC, New York, 2009).

    Google Scholar 

  30. A. W. Schuttelkopf and D. M. van Aalten, Acta Crystallogr. D 60 (8), 1355 (2004).

    Article  Google Scholar 

  31. R. A. Friesner, J. L. Banks, R. B. Murphy, et al., J. Med. Chem. 47 (7), 1739 (2004).

    Article  Google Scholar 

  32. D. Van Der Spoel, E. Lindahl, B. Hess, et al., J. Comput. Chem. 26 (16), 1701 (2005).

    Article  Google Scholar 

  33. T. Schlesier and G. Diezemann, J. Phys. Chem. B 117 (6), 1862 (2013).

    Article  Google Scholar 

  34. W. G. Touw, C. Baakman, J. Black, et al., Nucl. Acids Res. 43 (Database issue), D364 (2015).

    Article  Google Scholar 

  35. M. G. Rossmann and P. Argos, Annu Rev. Biochem. 50, 497 (1981).

    Article  Google Scholar 

  36. M. J. Pugmire, W. J. Cook, A. Jasanoff, et al., J. Mol. Biol. 281 (2), 285 (1998).

    Article  Google Scholar 

  37. M. J. Pugmire and S. E. Ealick, Biochem. J. 361 (1), 1 (2002).

    Article  Google Scholar 

  38. T. T. Caradoc-Davies, S. M. Cutfield, I. L. Lamont, et al., J. Mol. Biol. 337 (2), 337 (2004).

    Article  Google Scholar 

  39. A. A. Lashkov, N. E. Zhukhlistova, A. H. Gabdoulkhakov, et al., Acta Crystallogr. D 66 (1), 51 (2010).

    Article  Google Scholar 

  40. E. Krissinel and K. Henrick, J. Mol. Biol. 372 (3), 774 (2007).

    Article  Google Scholar 

  41. V. L. Tsuprun, I. V. Tagunova, E. V. Lin’kova, et al., Biokhimiia 56 (5), 930 (1991).

    Google Scholar 

  42. M. V. Dontsova, A. G. Gabdoulkhakov, O. K. Molchan, et al., Acta Crystallogr. F 61 (4), 337 (2005).

    Article  Google Scholar 

  43. A. M. Mikhailov, E. A. Smirnova, V. L. Tsuprun, et al., Biochem. Int. 26 (4), 607 (1992).

    Google Scholar 

  44. W. Bu, E. C. Settembre, M. H. el Kouni, et al., Acta Crystallogr. D 61 (7), 863 (2005).

    Article  Google Scholar 

  45. M. V. Dontsova, A. G. Gabdoulkhakov, O. K. Molchan, et al., Acta Crystallogr. F 61 (4), 337 (2005).

    Article  Google Scholar 

  46. T. H. Tran, S. Christoffersen, P. W. Allan, et al., Biochemistry 50 (30), 6549 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Prokofev.

Additional information

Original Russian Text © I.I. Prokofev, A.A. Lashkov, A.G. Gabdulkhakov, V.V. Balaev, A.S. Mironov, C. Betzel, A.M. Mikhailov, 2018, published in Kristallografiya, 2018, Vol. 63, No. 3, pp. 423–432.

† Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokofev, I.I., Lashkov, A.A., Gabdulkhakov, A.G. et al. Structural and Functional Analysis of Pyrimidine Nucleoside Phosphorylases of the NP-I and NP-II Families in Complexes with 6-Methyluracil. Crystallogr. Rep. 63, 418–427 (2018). https://doi.org/10.1134/S1063774518030239

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774518030239

Navigation