Skip to main content
Log in

Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling

  • Structure of Macromolecular Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Pyrimidine nucleoside phosphorylases, which are widely used in the biotechnological production of nucleosides, have different substrate specificity for pyrimidine nucleosides. An interesting feature of these enzymes is that the three-dimensional structure of thymidine-specific nucleoside phosphorylase is similar to the structure of nonspecific pyrimidine nucleoside phosphorylase. The three-dimensional structures of thymidine phosphorylase from Salmonella typhimurium and nonspecific pyrimidine nucleoside phosphorylase from Bacillus subtilis in complexes with a sulfate anion were determined for the first time by X-ray crystallography. An analysis of the structural differences between these enzymes demonstrated that Lys108, which is involved in the phosphate binding in pyrimidine nucleoside phosphorylase, corresponds to Met111 in thymidine phosphorylases. This difference results in a decrease in the charge on one of the hydroxyl oxygens of the phosphate anion in thymidine phosphorylase and facilitates the catalysis through SN2 nucleophilic substitution. Based on the results of X-ray crystallography, the virtual screening was performed for identifying a potent inhibitor (anticancer agent) of nonspecific pyrimidine nucleoside phosphorylase, which does not bind to thymidine phosphorylase. The molecular dynamics simulation revealed the stable binding of the discovered compound—2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid—to the active site of pyrimidine nucleoside phosphorylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Utagawa, J. Mol. Catal. B 6 (3), 215 (1999).

    Article  Google Scholar 

  2. M. J. Pugmire and S. E. Ealick, Biochem J. 361 (1), 1 (2002).

    Article  Google Scholar 

  3. J. Vande Voorde, S. Liekens, F. Gago, et al., Nucleosides, Nucleotides Nucleic Acids 33 (4–6), 394 (2014).

    Article  Google Scholar 

  4. T. Hamamoto, T. Noguchi, and Y. Midorikawa, Biosci. Biotechnol. Biochem. 60 (7), 1179 (1996).

    Article  Google Scholar 

  5. N. G. Panova, C. S. Alexeev, A. S. Kuzmichov, et al., Biochemistry (Moscow) 72 (1), 21 (2007).

    Article  Google Scholar 

  6. J. Vande Voorde, F. Gago, K. Vrancken, et al., Biochem. J. 445 (1), 113 (2012).

    Article  Google Scholar 

  7. M. J. Pugmire, W. J. Cook, A. Jasanoff, et al., J. Mol. Biol. 281 (2), 285 (1998).

    Article  Google Scholar 

  8. M. J. Pugmire and S. E. Ealick, Structure 6 (11), 1467 (1998).

    Article  Google Scholar 

  9. S. W. Rick, Y. G. Abashkin, R. L. Hilderbrandt, et al., Proteins 37 (2), 242 (1999).

    Article  Google Scholar 

  10. V. V. Balaev, A. A. Lashkov, A. G. Gabdulkhakov, et al., Acta Crystallogr. F 72 (3), 224 (2016).

    Article  Google Scholar 

  11. V. Timofeev, Y. Abramchik, N. Zhukhlistova, et al., Acta Crystallogr. D 70 (4), 1155 (2014).

    Article  Google Scholar 

  12. R. A. Norman, S. T. Barry, M. Bate, et al., Structure 12 (1), 75 (2004).

    Article  Google Scholar 

  13. K. El Omari, A. Bronckaers, S. Liekens, et al., Biochem. J. 399 (2), 199 (2006).

    Article  Google Scholar 

  14. A. Bronckaers, F. Gago, J. Balzarini, et al., Med. Res. Rev. 29 (6), 903 (2009).

    Article  Google Scholar 

  15. W. Kabsch, Acta Crystallogr. D 66 (2), 125 (2010).

    Article  Google Scholar 

  16. A. J. McCoy, Acta Crystallogr. D 63 (1), 32 (2007).

    Article  Google Scholar 

  17. P. D. Adams, P. V. Afonine, G. Bunkoczi, et al., Acta Crystallogr. D 66 (2), 213 (2010).

    Article  Google Scholar 

  18. P. V. Afonine, R. W. Grosse-Kunstleve, N. Echols, et al., Acta Crystallogr. D 68 (4), 352 (2012).

    Article  Google Scholar 

  19. G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Acta Crystallogr. D 53 (3), 240 (1997).

    Article  Google Scholar 

  20. P. Emsley and K. Cowtan, Acta Crystallogr. D 60 (12), 2126 (2004).

    Article  Google Scholar 

  21. P. Emsley, B. Lohkamp, W. G. Scott, et al., Acta Crystallogr. D 66 (4), 486 (2010).

    Article  Google Scholar 

  22. I. W. Davis, A. Leaver-Fay, V. B. Chen, et al., Nucleic Acids Res. 35, Web Server Issue, 375 (2007).

    Google Scholar 

  23. D. Van Der Spoel, E. Lindahl, B. Hess, et al., J. Comput. Chem. 26 (16), 1701 (2005).

    Article  Google Scholar 

  24. T. Schlesier and G. Diezemann, J. Phys. Chem. B 117 (6), 1862 (2013).

    Article  Google Scholar 

  25. M. R. Walter, W. J. Cook, L. B. Cole, et al., J. Biol. Chem. 265 (23), 14016 (1990).

    Google Scholar 

  26. F. Sievers, A. Wilm, D. Dineen, et al., Mol. Syst. Biol. 7, 539 (2011).

    Article  Google Scholar 

  27. W. G. Touw, C. Baakman, J. Black, et al., Nucleic Acids Res. 43, Database Issue, 364 (2015).

    Google Scholar 

  28. E. Mitsiki, A. C. Papageorgiou, S. Iyer, et al., Biochem. Biophys. Res. Commun. 386 (4), 666 (2009).

    Article  Google Scholar 

  29. M. H. Iltzsch, M. H. el Kouni, and S. Cha, Biochemistry 24 (24), 6799 (1985).

    Article  Google Scholar 

  30. S. Liekens, A. I. Hernandez, D. Ribatti, et al., J. Biol. Chem. 279 (28), 29598 (2004).

    Article  Google Scholar 

  31. D. W. Cruickshank, Acta Crystallogr. D 55 (3), 583 (1999).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lashkov.

Additional information

Original Russian Text © V.V. Balaev, A.A. Lashkov, I.I. Prokofev, A.G. Gabdulkhakov, T.A. Seregina, A.S. Mironov, C. Betzel, A.M. Mikhailov, 2016, published in Kristallografiya, 2016, Vol. 61, No. 5, pp. 797–808.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaev, V.V., Lashkov, A.A., Prokofev, I.I. et al. Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling. Crystallogr. Rep. 61, 830–841 (2016). https://doi.org/10.1134/S1063774516050023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774516050023

Navigation