M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, A. Belfiore, R. Bellazzini, B. Berenji, R.D. Blandford, E.D. Bloom, E. Bonamente, A.W. Borgland, E. Bottacini, M. Brigida, P. Bruel, R. Buehler, S. Buson, G.A. Caliandro, R.A. Cameron, P.A. Caraveo, J.M. Casandjian, C. Cecchi, A. Chekhtman, C.C. Cheung, J. Chiang, S. Ciprini, R. Claus, J. Cohen-Tanugi, A. de Angelis, F. de Palma, C.D. Dermer, E. do Couto e Silva, P.S. Drell, D. Dumora, C. Favuzzi, S.J. Fegan, W.B. Focke, P. Fortin, Y. Fukazawa, P. Fusco, F. Gargano, S. Germani, N. Giglietto, F. Giordano, M. Giroletti, T. Glanzman, G. Godfrey, I.A. Grenier, L. Guillemot, S. Guiriec, D. Hadasch, Y. Hanabata, A.K. Harding, M. Hayashida, K. Hayashi, E. Hays, G. Jóhannesson, A.S. Johnson, T. Kamae, H. Katagiri, J. Kataoka, M. Kerr, J. Knödlseder, M. Kuss, J. Lande, L. Latronico, S.H. Lee, F. Longo, F. Loparco, B. Lott, M.N. Lovellette, P. Lubrano, P. Martin, M.N. Mazziotta, J.E. McEnery, J. Mehault, P.F. Michelson, W. Mitthumsiri, T. Mizuno, C. Monte, M.E. Monzani, A. Morselli, I.V. Moskalenko, S. Murgia, M. Naumann-Godo, P.L. Nolan, J.P. Norris, E. Nuss, T. Ohsugi, A. Okumura, E. Orlando, J.F. Ormes, M. Ozaki, D. Paneque, D. Parent, M. Pesce-Rollins, M. Pierbattista, F. Piron, M. Pohl, D. Prokhorov, S. Rainò, R. Rando, M. Razzano, T. Reposeur, S. Ritz, P.M.S. Parkinson, C. Sgrò, E.J. Siskind, P.D. Smith, P. Spinelli, A.W. Strong, H. Takahashi, T. Tanaka, J.G. Thayer, J.B. Thayer, D.J. Thompson, L. Tibaldo, D.F. Torres, G. Tosti, A. Tramacere, E. Troja, Y. Uchiyama, J. Vandenbroucke, V. Vasileiou, G. Vianello, V. Vitale, A.P. Waite, P. Wang, B.L. Winer, K.S. Wood, Z. Yang, S. Zimmer, S. Bontemps, A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus Superbubble. Science 334(6059), 1103 (2011). https://doi.org/10.1126/science.1210311
ADS
Article
Google Scholar
R. Adam, H. Goksu, S. Brown, L. Rudnick, C. Ferrari, \(\gamma\)-ray detection toward the Coma cluster with Fermi-LAT: implications for the cosmic ray content in the hadronic scenario. Astron. Astrophys. 648, A60 (2021). https://doi.org/10.1051/0004-6361/202039660. 2102.02251
ADS
Article
Google Scholar
O. Adriani, G.C. Barbarino, G.A. Bazilevskaya, R. Bellotti, M. Boezio, E.A. Bogomolov, L. Bonechi, M. Bongi, V. Bonvicini, S. Borisov, S. Bottai, A. Bruno, F. Cafagna, D. Campana, R. Carbone, P. Carlson, M. Casolino, G. Castellini, L. Consiglio, M.P. De Pascale, C. De Santis, N. De Simone, V. Di Felice, A.M. Galper, W. Gillard, L. Grishantseva, G. Jerse, A.V. Karelin, S.V. Koldashov, S.Y. Krutkov, A.N. Kvashnin, A. Leonov, V. Malakhov, V. Malvezzi, L. Marcelli, A.G. Mayorov, W. Menn, V.V. Mikhailov, E. Mocchiutti, A. Monaco, N. Mori, N. Nikonov, G. Osteria, F. Palma, P. Papini, M. Pearce, P. Picozza, C. Pizzolotto, M. Ricci, S.B. Ricciarini, L. Rossetto, R. Sarkar, M. Simon, R. Sparvoli, P. Spillantini, Y.I. Stozhkov, A. Vacchi, E. Vannuccini, G. Vasilyev, S.A. Voronov, Y.T. Yurkin, J. Wu, G. Zampa, N. Zampa, V.G. Zverev, PAMELA measurements of cosmic-ray proton and helium spectra. Science 332(6025), 69 (2011)
ADS
Google Scholar
M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig, F. Barao, L. Barrin, A. Bartoloni, S. Başeğmez-du Pree, J. Bates, R. Battiston, M. Behlmann, B. Beischer, J. Berdugo, B. Bertucci, V. Bindi, W. de Boer, K. Bollweg, B. Borgia, M.J. Boschini, M. Bourquin, E.F. Bueno, J. Burger, W.J. Burger, S. Burmeister, X.D. Cai, M. Capell, J. Casaus, G. Castellini, F. Cervelli, Y.H. Chang, G.M. Chen, H.S. Chen, Y. Chen, L. Cheng, H.Y. Chou, S. Chouridou, V. Choutko, C.H. Chung, C. Clark, G. Coignet, C. Consolandi, A. Contin, C. Corti, Z. Cui, K. Dadzie, Y.M. Dai, C. Delgado, S. Della Torre, M.B. Demirköz, L. Derome, S. Di Falco, V. Di Felice, C. Díaz, F. Dimiccoli, P. von Doetinchem, F. Dong, F. Donnini, M. Duranti, A. Egorov, A. Eline, J. Feng, E. Fiandrini, P. Fisher, V. Formato, C. Freeman, Y. Galaktionov, C. Gámez, R.J. García-López, C. Gargiulo, H. Gast, I. Gebauer, M. Gervasi, F. Giovacchini, D.M. Gómez-Coral, J. Gong, C. Goy, V. Grabski, D. Grandi, M. Graziani, K.H. Guo, S. Haino, K.C. Han, R.K. Hashmani, Z.H. He, B. Heber, T.H. Hsieh, J.Y. Hu, Z.C. Huang, W. Hungerford, M. Incagli, W.Y. Jang, Y. Jia, H. Jinchi, K. Kanishev, B. Khiali, G.N. Kim, T. Kirn, M. Konyushikhin, O. Kounina, A. Kounine, V. Koutsenko, A. Kuhlman, A. Kulemzin, G. La Vacca, E. Laudi, G. Laurenti, I. Lazzizzera, A. Lebedev, H.T. Lee, S.C. Lee, C. Leluc, J.Q. Li, M. Li, Q. Li, S. Li, T.X. Li, Z.H. Li, C. Light, C.H. Lin, T. Lippert, Z. Liu, S.Q. Lu, Y.S. Lu, K. Luebelsmeyer, J.Z. Luo, S.S. Lyu, F. Machate, C. Mañá, J. Marín, J. Marquardt, T. Martin, G. Martínez, N. Masi, D. Maurin, A. Menchaca-Rocha, Q. Meng, D.C. Mo, M. Molero, P. Mott, L. Mussolin, J.Q. Ni, N. Nikonov, F. Nozzoli, A. Oliva, M. Orcinha, M. Palermo, F. Palmonari, M. Paniccia, A. Pashnin, M. Pauluzzi, S. Pensotti, H.D. Phan, V. Plyaskin, M. Pohl, S. Porter, X.M. Qi, X. Qin, Z.Y. Qu, L. Quadrani, P.G. Rancoita, D. Rapin, A. Reina Conde, S. Rosier-Lees, A. Rozhkov, D. Rozza, R. Sagdeev, S. Schael, S.M. Schmidt, A. Schulz von Dratzig, G. Schwering, E.S. Seo, B.S. Shan, J.Y. Shi, T. Siedenburg, C. Solano, J.W. Song, R. Sonnabend, Q. Sun, Z.T. Sun, M. Tacconi, X.W. Tang, Z.C. Tang, J. Tian, S.C.C. Ting, S.M. Ting, N. Tomassetti, J. Torsti, C. Tüysüz, T. Urban, I. Usoskin, V. Vagelli, R. Vainio, E. Valente, E. Valtonen, M. Vázquez Acosta, M. Vecchi, M. Velasco, J.P. Vialle, L.Q. Wang, N.H. Wang, Q.L. Wang, S. Wang, X. Wang, Z.X. Wang, J. Wei, Z.L. Weng, H. Wu, R.Q. Xiong, W. Xu, Q. Yan, Y. Yang, H. Yi, Y.J. Yu, Z.Q. Yu, M. Zannoni, C. Zhang, F. Zhang, F.Z. Zhang, J.H. Zhang, Z. Zhang, F. Zhao, Z.M. Zheng, H.L. Zhuang, V. Zhukov, A. Zichichi, N. Zimmermann, P. Zuccon (AMS Collaboration), The alpha magnetic spectrometer (AMS) on the international space station: part II - results from the first seven years. Phys. Rep. 894, 1–116 (2021)
ADS
Google Scholar
F.A. Aharonian, A.G. Akhperjanian, K.M. Aye, A.R. Bazer-Bachi, M. Beilicke, W. Benbow, D. Berge, P. Berghaus, K. Bernlöhr, O. Bolz, C. Boisson, C. Borgmeier, F. Breitling, A.M. Brown, J. Bussons Gordo, P.M. Chadwick, V.R. Chitnis, L.M. Chounet, R. Cornils, L. Costamante, B. Degrange, A. Djannati-Ataï, L.O. Drury, T. Ergin, P. Espigat, F. Feinstein, P. Fleury, G. Fontaine, S. Funk, Y.A. Gallant, B. Giebels, S. Gillessen, P. Goret, J. Guy, C. Hadjichristidis, M. Hauser, G. Heinzelmann, G. Henri, G. Hermann, J.A. Hinton, W. Hofmann, M. Holleran, D. Horns, O.C. de Jager, I. Jung, B. Khélifi, N. Komin, A. Konopelko, I.J. Latham, R. Le Gallou, M. Lemoine, A. Lemière, N. Leroy, T. Lohse, A. Marcowith, C. Masterson, T.J.L. McComb, M. de Naurois, S.J. Nolan, A. Noutsos, K.J. Orford, J.L. Osborne, M. Ouchrif, M. Panter, G. Pelletier, S. Pita, M. Pohl, G. Pühlhofer, M. Punch, B.C. Raubenheimer, M. Raue, J. Raux, S.M. Rayner, I. Redondo, A. Reimer, O. Reimer, J. Ripken, M. Rivoal, L. Rob, L. Rolland, G. Rowell, V. Sahakian, L. Saugé, S. Schlenker, R. Schlickeiser, C. Schuster, U. Schwanke, M. Siewert, H. Sol, R. Steenkamp, C. Stegmann, J.P. Tavernet, C.G. Théoret, M. Tluczykont, D.J. van der Walt, G. Vasileiadis, P. Vincent, B. Visser, H.J. Völk, S.J. Wagner, High-energy particle acceleration in the shell of a supernova remnant. Nature 432(7013), 75–77 (2004). https://doi.org/10.1038/nature02960. astro-ph/0411533
ADS
Article
Google Scholar
F. Aharonian, R. Yang, E. de Oña Wilhelmi, Massive stars as major factories of galactic cosmic rays. Nat. Astron. 3, 561–567 (2019). https://doi.org/10.1038/s41550-019-0724-0. 1804.02331
ADS
Article
Google Scholar
A. Alexandrov, L. Bogdankevich, A. Rukhadze, Principles of Plasma Electrodynamics. Springer Series in Electronics and Photonics (Springer, Berlin, 2013). https://books.google.de/books?id=NuerngEACAAJ
Google Scholar
R.C. Allen, G.C. Ho, G.M. Mason, G. Li, L.K. Jian, S.K. Vines, N.A. Schwadron, C.J. Joyce, S.D. Bale, J.W. Bonnell, A.W. Case, E.R. Christian, C.M.S. Cohen, M.I. Desai, R. Filwett, K. Goetz, P.R. Harvey, M.E. Hill, J.C. Kasper, K.E. Korreck, D. Lario, D. Larson, R. Livi, R.J. MacDowall, D.M. Malaspina, D.J. McComas, R. McNutt, D.G. Mitchell, K.W. Paulson, M. Pulupa, N. Raouafi, M.L. Stevens, P.L. Whittlesey, M. Wiedenbeck, Radial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREO A. Geophys. Res. Lett. 48(3), e91376 (2021)
ADS
Google Scholar
E. Amato, The origin of galactic cosmic rays. Int. J. Mod. Phys. D 23(07), 1430, 013 (2014)
MathSciNet
Google Scholar
W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in Proc. 15th ICRC (Plovdiv), vol. 11 (1977), p. 132
Google Scholar
S.D. Bale, P.J. Kellogg, F.S. Mozer, T.S. Horbury, H. Reme, Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94(21), 215002 (2005)
ADS
Google Scholar
S.J. Bame, D.J. McComas, B.L. Barraclough, J.L. Phillips, K.J. Sofaly, J.C. Chavez, B.E. Goldstein, R.K. Sakurai, The ULYSSES solar wind plasma experiment. Astron. Astrophys. Suppl. Ser. 92(2), 237–265 (1992)
ADS
Google Scholar
A.R. Bell, The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978). https://doi.org/10.1093/mnras/182.2.147
ADS
Article
Google Scholar
A. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353(2), 550–558 (2004)
ADS
Google Scholar
E.G. Berezhko, G.F. Krymskiĭ, Reviews of topical problems: acceleration of cosmic rays by shock waves. Sov. Phys. Usp. 31, 27–51 (1988)
ADS
Google Scholar
J.W. Bieber, W.H. Matthaeus, C.W. Smith, W. Wanner, M.B. Kallenrode, G. Wibberenz, Proton and electron mean free paths: the palmer consensus revisited. Astrophys. J. 420, 294–306 (1994)
ADS
Google Scholar
R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987)
ADS
Google Scholar
R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. 221, L29–L32 (1978)
ADS
Google Scholar
P. Blasi, Acceleration of galactic cosmic rays. Nuovo Cimento Riv. Ser. 42(12), 549–600 (2019). https://doi.org/10.1393/ncr/i2019-10166-0
ADS
Article
Google Scholar
A.M. Bykov, Nonthermal particles and photons in starburst regions and superbubbles. Astron. Astrophys. Rev. 22, 77 (2014). https://doi.org/10.1007/s00159-014-0077-8. 1511.04608
ADS
Article
Google Scholar
A.M. Bykov, I.N. Toptygin, Effect of shocks on interstellar turbulence and cosmic-ray dynamics. Astrophys. Space Sci. 138(2), 341–354 (1987). https://doi.org/10.1007/BF00637855
ADS
Article
Google Scholar
A.M. Bykov, I. Toptygin, Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods). Phys. Usp. 36(11), 1020–1052 (1993). https://doi.org/10.1070/PU1993v036n11ABEH002179
ADS
Article
Google Scholar
A.M. Bykov, A. Brandenburg, M.A. Malkov, S.M. Osipov, Microphysics of cosmic ray driven plasma instabilities. Space Sci. Rev. 178(2–4), 201–232 (2013a). https://doi.org/10.1007/s11214-013-9988-3. 1304.7081
ADS
Article
Google Scholar
A.M. Bykov, P.E. Gladilin, S.M. Osipov, Non-linear model of particle acceleration at colliding shock flows. Mon. Not. R. Astron. Soc. 429(3), 2755–2762 (2013b). https://doi.org/10.1093/mnras/sts553. 1212.1556
ADS
Article
Google Scholar
A.M. Bykov, D.C. Ellison, S.M. Osipov, Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification. Phys. Rev. E. 95, 033,207 (2017). https://doi.org/10.1103/PhysRevE.95.033207
Article
Google Scholar
A.M. Bykov, A.E. Petrov, A.M. Krassilchtchikov, K.P. Levenfish, S.M. Osipov, G.G. Pavlov, GeV-TeV cosmic-ray leptons in the solar system from the bow shock wind nebula of the nearest millisecond pulsar J0437-4715. Astrophys. J. Lett. 876(1), L8 (2019a). https://doi.org/10.3847/2041-8213/ab1922. 1904.09430
ADS
Article
Google Scholar
A.M. Bykov, F. Vazza, J.A. Kropotina, K.P. Levenfish, F.B.S. Paerels, Shocks and non-thermal particles in clusters of galaxies. Space Sci. Rev. 215(1), 14 (2019b). https://doi.org/10.1007/s11214-019-0585-y. 1902.00240
ADS
Article
Google Scholar
A.M. Bykov, A. Marcowith, E. Amato, M.E. Kalyashova, J.M.D. Kruijssen, E. Waxman, High-energy particles and radiation in star-forming regions. Space Sci. Rev. 216(3), 42 (2020). https://doi.org/10.1007/s11214-020-00663-0. 2003.11534
ADS
Article
Google Scholar
A.M. Bykov, A.E. Petrov, M.E. Kalyashova, S.V. Troitsky, PeV photon and neutrino flares from galactic gamma-ray binaries. Astrophys. J. Lett. 921(1), L10 (2021). https://doi.org/10.3847/2041-8213/ac2f3d. 2110.11189
ADS
Article
Google Scholar
D. Caprioli, D.T. Yi, A. Spitkovsky, Chemical enhancements in shock-accelerated particles: ab initio simulations. Phys. Rev. Lett. 119(17), 171101 (2017)
ADS
Google Scholar
M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. 13(5), 529–539 (1967)
ADS
Google Scholar
F. Casse, M. Lemoine, G. Pelletier, Transport of cosmic rays in chaotic magnetic fields. Phys. Rev. D 65(2), 023,002 (2001)
Google Scholar
S.V. Chalov, H.J. Fahr, The role of solar wind electrons at the solar wind termination shock. Mon. Not. R. Astron. Soc. 433, L40–L43 (2013). https://doi.org/10.1093/mnrasl/slt052
ADS
Article
Google Scholar
I.V. Chashei, H.J. Fahr, On the electron temperature downstream of the solar wind termination shock. Ann. Geophys. 31(7), 1205–1212 (2013). https://doi.org/10.5194/angeo-31-1205-2013
ADS
Article
Google Scholar
F.F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-22309-4
Book
Google Scholar
E.W. Cliver, A.G. Ling, Low-frequency type III bursts and solar energetic particle events. Astrophys. J. 690(1), 598–609 (2009). https://doi.org/10.1088/0004-637X/690/1/598
ADS
Article
Google Scholar
L. Comisso, L. Sironi, The interplay of magnetically dominated turbulence and magnetic reconnection in producing nonthermal particles. Astrophys. J. 886(2), 122 (2019). https://doi.org/10.3847/1538-4357/ab4c33. 1909.01420
ADS
Article
Google Scholar
N. Crooker, J. Gosling, V. Bothmer, R. Forsyth, P. Gazis, A. Hewish, T. Horbury, D. Intriligator, J. Jokipii, J. Kóta et al., Cir morphology, turbulence, discontinuities, and energetic particles. Space Sci. Rev. 89(1–2), 179–220 (1999)
ADS
Google Scholar
R.B. Decker, S.M. Krimigis, E.C. Roelof, M.E. Hill, T.P. Armstrong, G. Gloeckler, D.C. Hamilton, L.J. Lanzerotti, Voyager 1 in the foreshock, termination shock, and heliosheath. Science 309(5743), 2020–2024 (2005). https://doi.org/10.1126/science.1117569
ADS
Article
Google Scholar
R.B. Decker, S.M. Krimigis, E.C. Roelof, M.E. Hill, T.P. Armstrong, G. Gloeckler, D.C. Hamilton, L.J. Lanzerotti, Mediation of the solar wind termination shock by non-thermal ions. Nature 454(7200), 67–70 (2008). https://doi.org/10.1038/nature07030
ADS
Article
Google Scholar
A. Dosch, A. Shalchi, Diffusive shock acceleration at interplanetary perpendicular shock waves: influence of the large scale structure of turbulence on the maximum particle energy. Adv. Space Res. 46(9), 1208–1217 (2010). https://doi.org/10.1016/j.asr.2010.07.001. https://www.sciencedirect.com/science/article/pii/S0273117710004588
ADS
Article
Google Scholar
J.F. Drake, M. Swisdak, H. Che, M.A. Shay, Electron acceleration from contracting magnetic islands during reconnection. Nature 443(7111), 553–556 (2006)
ADS
Google Scholar
L.O. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46(8), 973 (1983)
ADS
Google Scholar
F. Effenberger, F. Rubio da Costa, M. Oka, P. Saint-Hilaire, W. Liu, V. Petrosian, L. Glesener, S. Krucker, Hard X-ray emission from partially occulted solar flares: RHESSI observations in two solar cycles. Astrophys. J. 835(2), 124 (2017). https://doi.org/10.3847/1538-4357/835/2/124. 1612.02856
ADS
Article
Google Scholar
J. Egedal, J. Schroeder, E. Lichko, Parallel velocity mixing yielding enhanced electron heating during magnetic pumping. J. Plasma Phys. 87(2), 905870116 (2021). https://doi.org/10.1017/S0022377821000088. 2102.06300
Article
Google Scholar
N. Engelbrecht, F. Effenberger, V. Florinski, M. Potgieter, D. Ruffolo, R. Chhiber, A. Usmanov, J. Rankin, P. Els, Theory of cosmic ray transport in the heliosphere. Space Sci. Rev. 218 (2022)
H.J. Fahr, H. Fichtner, Pick-up ion transport under conservation of particle invariants: how important are velocity diffusion and cooling processes? Astron. Astrophys. 533, A92 (2011). https://doi.org/10.1051/0004-6361/201116880
ADS
Article
Google Scholar
H.J. Fahr, M. Heyl, Probing the thermodynamic conditions of the heliosheath plasma by shock wave propagation. Astron. Astrophys. 642, A144 (2020). https://doi.org/10.1051/0004-6361/202038453
ADS
Article
Google Scholar
H.J. Fahr, G. Lay, Remote diagnostic of the heliospheric termination shock using neutralized post shock pick-up ions as messengers. Astron. Astrophys. 356, 327–334 (2000)
ADS
Google Scholar
H.J. Fahr, M. Siewert, The multi-fluid pressures downstream of the solar wind termination shock. Astron. Astrophys. 558, A41 (2013). https://doi.org/10.1051/0004-6361/201322262
Article
Google Scholar
H.J. Fahr, M. Siewert, Entropy generation at multi-fluid magnetohydrodynamic shocks with emphasis to the solar wind termination shock. Astron. Astrophys. 576, A100 (2015). https://doi.org/10.1051/0004-6361/201424485
Article
Google Scholar
H.J. Fahr, D. Verscharen, Electrons under the dominant action of shock-electric fields. Astron. Astrophys. 587, L1 (2016). https://doi.org/10.1051/0004-6361/201527901. 1602.04263
ADS
Article
Google Scholar
H.J. Fahr, M. Siewert, I. Chashei, Phasespace transport of a quasi-neutral multi-fluid plasma over the solar wind MHD termination shock. Astrophys. Space Sci. 341(2), 265–276 (2012). https://doi.org/10.1007/s10509-012-1126-2
ADS
Article
MATH
Google Scholar
H.J. Fahr, J.D. Richardson, D. Verscharen, The electron distribution function downstream of the solar-wind termination shock: where are the hot electrons? Astron. Astrophys. 579, A18 (2015). https://doi.org/10.1051/0004-6361/201525710. 1505.02676
ADS
Article
Google Scholar
H.J. Fahr, A. Sylla, H. Fichtner, K. Scherer, On the evolution of the \(\kappa \) distribution of protons in the inner heliosheath. J. Geophys. Res. 121, 8203–8214 (2016). https://doi.org/10.1002/2016JA022561
Article
Google Scholar
G. Ferrand, R.J. Danos, A. Shalchi, S. Safi-Harb, P. Edmon, P. Mendygral, Cosmic ray acceleration at perpendicular shocks in supernova remnants. Astrophys. J. 792(2), 133 (2014). https://doi.org/10.1088/0004-637x/792/2/133.
ADS
Article
Google Scholar
H. Fichtner, K. Scherer, M. Lazar, H.J. Fahr, Z. Vörös, Entropy of plasmas described with regularized \(\kappa\) distributions. Phys. Rev. E 98(5), 053205 (2018). https://doi.org/10.1103/PhysRevE.98.053205. 1810.12645
ADS
Article
Google Scholar
L.A. Fisk, G. Gloeckler, The common spectrum for accelerated ions in the quiet-time solar wind. Astrophys. J. Lett. 640, L79–L82 (2006). https://doi.org/10.1086/503293
ADS
Article
Google Scholar
L.A. Fisk, G. Gloeckler, Particle acceleration in the heliosphere: implications for astrophysics. Space Sci. Rev. 173, 433–458 (2012). https://doi.org/10.1007/s11214-012-9899-8
ADS
Article
Google Scholar
L.A. Fisk, G. Gloeckler, The case for a common spectrum of particles accelerated in the heliosphere: observations and theory. J. Geophys. Res. 119, 8733–8749 (2014). https://doi.org/10.1002/2014JA020426
Article
Google Scholar
L.A. Fisk, G. Gloeckler, The pump acceleration mechanism, J. Phys. Conf. Ser. 900 (2017), 012006. https://doi.org/10.1088/1742-6596/900/1/012006
Article
Google Scholar
L.A. Fisk, M.A. Lee, Shock acceleration of energetic particles in corotating interaction regions in the solar wind. Astrophys. J. 237, 620–626 (1980)
ADS
Google Scholar
T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1990)
Google Scholar
S.P. Gary, O. Chang, J. Wang, Forward cascade of whistler turbulence: three-dimensional particle-in-cell simulations. Astrophys. J. 755(2), 142 (2012)
ADS
Google Scholar
J. Giacalone, Particle acceleration at shocks moving through an irregular magnetic field. Astrophys. J. 624(2), 765–772 (2005a)
ADS
Google Scholar
J. Giacalone, The efficient acceleration of thermal protons by perpendicular shocks. Astrophys. J. 628(1), L37–L40 (2005b)
ADS
Google Scholar
J. Giacalone, Energetic charged particles associated with strong interplanetary shocks. Astrophys. J. 761, 28 (2012). https://doi.org/10.1088/0004-637X/761/1/28
ADS
Article
Google Scholar
J. Giacalone, Cosmic-ray transport and interaction with shocks. Space Sci. Rev. 176(1–4), 73–88 (2013)
ADS
Google Scholar
J. Giacalone, The acceleration of charged particles at a spherical shock moving through an irregular magnetic field. Astrophys. J. 848(2), 123 (2017)
ADS
Google Scholar
J. Giacalone, J. Jokipii, The transport of cosmic rays across a turbulent magnetic field. Astrophys. J. 520(1), 204 (1999)
ADS
Google Scholar
J. Giacalone, J.R. Jokipii, Magnetic field amplification by shocks in turbulent fluids. Astrophys. J. Lett. 663(1), L41–L44 (2007)
ADS
Google Scholar
J. Giacalone, M. Neugebauer, The energy spectrum of energetic particles downstream of turbulent collisionless shocks. Astrophys. J. 673(1), 629–636 (2008)
ADS
Google Scholar
J. Giacalone, J.F. Drake, J.R. Jokipii, The acceleration mechanism of anomalous cosmic rays. Space Sci. Rev. 173(1–4), 283–307 (2012)
ADS
Google Scholar
J. Giacalone, H. Fahr, H. Fichtner, V. Florinksi, B. Heber, M. Hill, J. Kota, R. Leske, M.S. Potgieter, J. Rankin, Anomalous cosmic rays and other heliospheric energetic particles. Space Sci. Rev. 218, (2022)
J.P. Goedbloed, A. Lifschitz, Stationary symmetric magnetohydrodynamic flows. Phys. Plasmas 4(10), 3544–3564 (1997). https://doi.org/10.1063/1.872251
ADS
MathSciNet
Article
Google Scholar
V.V. Grechnev, A.M. Uralov, I.V. Kuzmenko, A.A. Kochanov, I.M. Chertok, S.S. Kalashnikov, Responsibility of a filament eruption for the initiation of a flare, CME, and blast wave, and its possible transformation into a bow shock. Sol. Phys. 290(1), 129–158 (2015)
ADS
Google Scholar
A. Greco, P. Chuychai, W.H. Matthaeus, S. Servidio, P. Dmitruk, Intermittent MHD structures and classical discontinuities. Geophys. Res. Lett. 35(19), L19111 (2008)
ADS
Google Scholar
A. Greco, S. Servidio, W.H. Matthaeus, P. Dmitruk, Intermittent structures and magnetic discontinuities on small scales in MHD simulations and solar wind. Planet. Space Sci. 58(14–15), 1895–1899 (2010)
ADS
Google Scholar
A. Greco, W.H. Matthaeus, S. Perri, K.T. Osman, S. Servidio, M. Wan, P. Dmitruk, Partial variance of increments method in solar wind observations and plasma simulations. Space Sci. Rev. 214(1), 1 (2018)
ADS
Google Scholar
E. Grimaldo, A. Reimer, R. Kissmann, F. Niederwanger, K. Reitberger, Proton acceleration in colliding stellar wind binaries. Astrophys. J. 871(1), 55 (2019). https://doi.org/10.3847/1538-4357/aaf6ee. 1812.02960
ADS
Article
Google Scholar
L. Han-Thanh, K. Scherer, H. Fichtner, Relativistic regularized kappa distributions. Phys. Plasmas 29, 022901 (2022). https://doi.org/10.1063/5.0080293
ADS
Article
Google Scholar
K. Hasselmann, G. Wibberenz, A note on the parallel diffusion coefficient. Astrophys. J. 162, 1049 (1970). https://doi.org/10.1086/150736
ADS
Article
Google Scholar
J. Heerikhuisen, E.J. Zirnstein, N.V. Pogorelov, G.P. Zank, M. Desai, The effect of suprathermal protons in the heliosheath on the global structure of the heliosphere and heliotail. Astrophys. J. 874(1), 76 (2019). https://doi.org/10.3847/1538-4357/ab05e3
ADS
Article
Google Scholar
E.A. Helder, J. Vink, A.M. Bykov, Y. Ohira, J.C. Raymond, R. Terrier, Observational signatures of particle acceleration in supernova remnants. Space Sci. Rev. 173(1–4), 369–431 (2012). https://doi.org/10.1007/s11214-012-9919-8. 1206.1593
ADS
Article
Google Scholar
M. Hoshino, Stochastic particle acceleration in multiple magnetic islands during reconnection. Phys. Rev. Lett. 108(13), 135003 (2012)
ADS
Google Scholar
E. Husidic, M. Lazar, H. Fichtner, K. Scherer, P. Astfalk, Linear dispersion theory of parallel electromagnetic modes for regularized Kappa-distributions. Phys. Plasmas 27(4), 042110 (2020). https://doi.org/10.1063/1.5145181. 2006.03308
ADS
Article
Google Scholar
M. Hussein, A. Shalchi, Simulations of energetic particles interacting with dynamical magnetic turbulence. Astrophys. J. 817(2), 136 (2016)
ADS
Google Scholar
J.R. Jokipii, Cosmic-ray propagation. I. Charged particles in a random magnetic field. Astrophys. J. 146, 480 (1966)
ADS
Google Scholar
J.R. Jokipii, Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys. J. 313, 842 (1987)
ADS
Google Scholar
F.C. Jones, D.C. Ellison, The plasma physics of shock acceleration. Space Sci. Rev. 58, 259–346 (1991)
ADS
Google Scholar
P. Kajdič, L. Preisser, X. Blanco-Cano, D. Burgess, D. Trotta, First observations of irregular surface of interplanetary shocks at ion scales by cluster. Astrophys. J. Lett. 874(2), L13 (2019)
ADS
Google Scholar
H. Kang, D. Ryu, T.W. Jones, Diffusive shock acceleration simulations of radio relics. Astrophys. J. 756, 97 (2012). https://doi.org/10.1088/0004-637X/756/1/97. 1205.1895
ADS
Article
Google Scholar
H. Karimabadi, V. Roytershteyn, M. Wan, W.H. Matthaeus, W. Daughton, P. Wu, M. Shay, B. Loring, J. Borovsky, E. Leonardis, S.C. Chapman, T.K.M. Nakamura, Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20(1), 012303 (2013)
ADS
Google Scholar
C.F. Kennel, H. Petschek, Limit on stably trapped particle fluxes. J. Geophys. Res. 71(1), 1–28 (1966)
ADS
Google Scholar
C.F. Kennel, F.V. Coroniti, F.L. Scarf, W.A. Livesey, C.T. Russell, E.J. Smith, K.P. Wenzel, M. Scholer, A test of Lee’s quasi-linear theory of ion acceleration by interplanetary traveling shocks. J. Geophys. Res. 191(A11), 11,917–11,928 (1986). https://doi.org/10.1029/JA091iA11p11917
ADS
Article
Google Scholar
J.G. Kirk, P. Duffy, Y.A. Gallant, Stochastic particle acceleration at shocks in the presence of braided magnetic fields. Astron. Astrophys. 314, 1010–1016 (1996). astro-ph/9604056
ADS
Google Scholar
J. Klafter, A. Blumen, M.F. Shlesinger, Stochastic pathway to anomalous diffusion. Phys. Rev. A 35, 3081–3085 (1987). https://doi.org/10.1103/PhysRevA.35.3081
ADS
MathSciNet
Article
Google Scholar
J.A. Kropotina, L. Webster, A.V. Artemyev, A.M. Bykov, D.L. Vainchtein, I.Y. Vasko, Solar wind discontinuity transformation at the bow shock. Astrophys. J. 913(2), 142 (2021). https://doi.org/10.3847/1538-4357/abf6c7. 2106.06414
ADS
Article
Google Scholar
G.F. Krymskii, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akad. Nauk SSSR Dokl. 234, 1306–1308 (1977)
ADS
Google Scholar
D. Lario, L. Berger, I.L.B. Wilson, R.B. Decker, D.K. Haggerty, E.C. Roelof, R.F. Wimmer-Schweingruber, J. Giacalone, Flat proton spectra in large solar energetic particle events, J. Phys. Conf. Ser. 1100 (2018), 012014. https://doi.org/10.1088/1742-6596/1100/1/012014
Article
Google Scholar
M. Lazar, Towards realistic characterization of the solar wind suprathermal populations and their effects. Phys. Plasmas 24(3), 034501 (2017). https://doi.org/10.1063/1.4977899
ADS
Article
Google Scholar
M. Lazar, H. Fichtner (eds.), Kappa Distributions: From Observational Evidences via Controversial Predictions to a Consistent Theory of Nonequilibrium Plasmas (Springer, Berlin, 2021)
Google Scholar
M. Lazar, S. Poedts, H. Fichtner, Destabilizing effects of the suprathermal populations in the solar wind. A & A 582, A124 (2015). https://doi.org/10.1051/0004-6361/201526509
ADS
Article
Google Scholar
M. Lazar, H. Fichtner, P.H. Yoon, On the interpretation and applicability of \(\kappa\)-distributions. A & A 589, A39 (2016). https://doi.org/10.1051/0004-6361/201527593. 1602.04132
ADS
Article
Google Scholar
M. Lazar, V. Pierrard, S.M. Shaaban, H. Fichtner, S. Poedts, Dual Maxwellian-Kappa modeling of the solar wind electrons: new clues on the temperature of Kappa populations. A & A 602, A44 (2017). https://doi.org/10.1051/0004-6361/201630194. 1703.01459
ADS
Article
Google Scholar
A. Lazarian, H. Yan, Superdiffusion of cosmic rays: implications for cosmic ray acceleration. Astrophys. J. 784(1), 38 (2014)
ADS
Google Scholar
J.A. le Roux, G.P. Zank, A focused transport-based kinetic fractional diffusion-advection equation for energetic particle trapping and reconnection-related acceleration by small-scale magnetic flux ropes in the solar wind. Astrophys. J. 913(2), 84 (2021). https://doi.org/10.3847/1538-4357/abf3c6
ADS
Article
Google Scholar
J.A. le Roux, G.P. Zank, G.M. Webb, O. Khabarova, A kinetic transport theory for particle acceleration and transport in regions of multiple contracting and reconnecting inertial-scale flux ropes. Astrophys. J. 801(2), 112 (2015)
ADS
Google Scholar
M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. J. Geophys. Res. 188(A8), 6109–6120 (1983). https://doi.org/10.1029/JA088iA08p06109
ADS
Article
Google Scholar
M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. Astrophys. J. Suppl. Ser. 158(1), 38–67 (2005). https://doi.org/10.1086/428753
ADS
Article
Google Scholar
M.A. Lee, L.A. Fisk, Shock acceleration of energetic particles in the heliosphere. Space Sci. Rev. 32, 205–228 (1982). https://doi.org/10.1007/BF00225185
ADS
Article
Google Scholar
M.A. Lee, R.A. Mewaldt, J. Giacalone, Shock acceleration of ions in the heliosphere. Space Sci. Rev. 173(1–4), 247–281 (2012)
ADS
Google Scholar
B. Lembège, P. Savoini, M. Balikhin, S. Walker, V. Krasnoselskikh, Demagnetization of transmitted electrons through a quasi-perpendicular collisionless shock. J. Geophys. Res. 108(A6), 1256 (2003). https://doi.org/10.1029/2002JA009288
Article
Google Scholar
B. Lembège, J. Giacalone, M. Scholer, T. Hada, M. Hoshino, V. Krasnoselskikh, H. Kucharek, P. Savoini, T. Terasawa, Selected problems in collisionless-shock physics. Space Sci. Rev. 110(3), 161–226 (2004). https://doi.org/10.1023/B:SPAC.0000023372.12232.b7
ADS
Article
Google Scholar
M. Lemoine, Particle acceleration in strong MHD turbulence, arXiv e-prints (2021). arXiv:2104.08199
M.M. Leroy, A. Mangeney, A theory of energization of solar wind electrons by the Earth’s bow shock. Ann. Geophys. 2, 449–456 (1984)
ADS
Google Scholar
E. Lichko, J. Egedal, Magnetic pumping model for energizing superthermal particles applied to observations of the Earth’s bow shock. Nat. Commun. 11, 2942 (2020). https://doi.org/10.1038/s41467-020-16660-4
ADS
Article
Google Scholar
R. Lin, Non-relativistic solar electrons. Space Sci. Rev. 16(1–2), 189–256 (1974)
ADS
Google Scholar
R.P. Lin, Relationship of solar flare accelerated particles to solar energetic particles (SEPs) observed in the interplanetary medium. Adv. Space Res. 35(10), 1857–1863 (2005). https://doi.org/10.1016/j.asr.2005.02.087
ADS
Article
Google Scholar
Y.E. Litvinenko, H. Fichtner, D. Walter, Anomalous transport of cosmic rays in a nonlinear diffusion model. Astrophys. J. 841, 57 (2017). https://doi.org/10.3847/1538-4357/aa71ba
ADS
Article
Google Scholar
Y.E. Litvinenko, D. Walter, H. Fichtner, A nonlinear energetic particle diffusion model with a variable source. AIP Adv. 9(5), 055,005 (2019). https://doi.org/10.1063/1.5090953
Article
Google Scholar
S. Liu, J.R. Jokipii, Acceleration of charged particles in astrophysical plasmas. Front. Astron. Space Sci. 8, 100 (2021). https://doi.org/10.3389/fspas.2021.651830
ADS
Article
Google Scholar
G. Livadiotis, Introduction to special section on origins and properties of kappa distributions: statistical background and properties of kappa distributions in space plasmas. J. Geophys. Res. Space Phys. 120, 1607–1619 (2015). https://doi.org/10.1002/2014JA020825
ADS
Article
Google Scholar
M.A. Malkov, L. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001)
ADS
Google Scholar
A. Marcowith, A. Bret, A. Bykov, M.E. Dieckman, L. O’C Drury, B. Lembège, M. Lemoine, G. Morlino, G. Murphy, G. Pelletier, I. Plotnikov, B. Reville, M. Riquelme, L. Sironi, A. Stockem Novo, The microphysics of collisionless shock waves. Rep. Prog. Phys. 79(4), 046901 (2016). https://doi.org/10.1088/0034-4885/79/4/046901. 1604.00318
ADS
Article
Google Scholar
S. Matsukiyo, M. Scholer, Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks. J. Geophys. Res. 108(A12), 1459 (2003). https://doi.org/10.1029/2003JA010080
Article
Google Scholar
H. Matsumoto, Theoretical studies on Whistler mode wave-particle interactions in the magnetospheric plasma. PhD thesis, Kyoto University, Japan (1972)
W. Matthaeus, G. Qin, J. Bieber, G. Zank, Nonlinear collisionless perpendicular diffusion of charged particles. Astrophys. J. Lett. 590(1), L53 (2003)
ADS
Google Scholar
R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000). https://doi.org/10.1016/S0370-1573(00)00070-3
ADS
MathSciNet
Article
MATH
Google Scholar
R. Metzler, J. Klafter, Topical review: the restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A, Math. Gen. 37, R161–R208 (2004). https://doi.org/10.1088/0305-4470/37/31/R01
ADS
Article
MATH
Google Scholar
R.A. Mewaldt, New views of solar energetic particles from the Advanced Composition Explorer, in 26th International Cosmic Ray Conference, ICRC XXVI, ed. by B.L. Dingus, D.B. Kieda, M.H. Salamon. American Institute of Physics Conference Series, vol. 516 (2000), pp. 265–273
Google Scholar
M. Nauenberg, Critique of q-entropy for thermal statistics. Phys. Rev. E 67(3), 036114 (2003). https://doi.org/10.1103/PhysRevE.67.036114. cond-mat/0210561
ADS
Article
Google Scholar
M. Neugebauer, J. Giacalone, Multispacecraft observations of interplanetary shocks: nonplanarity and energetic particles. J. Geophys. Res. Space Phys. 110(A12), A12106 (2005)
ADS
Google Scholar
C.K. Ng, D.V. Reames, A.J. Tylka, Modeling shock-accelerated solar energetic particles coupled to interplanetary Alfvén waves. Astrophys. J. 591(1), 461–485 (2003). https://doi.org/10.1086/375293
ADS
Article
Google Scholar
M. Oka, S. Ishikawa, P. Saint-Hilaire, S. Krucker, R.P. Lin, Kappa distribution model for hard X-ray coronal sources of solar flares. Astrophys. J. 764(1), 6 (2013). https://doi.org/10.1088/0004-637X/764/1/6. 1212.2579
ADS
Article
Google Scholar
S. Olbert, Summary of experimental results from M.I.T. detector on IMP-1, in Physics of the Magnetosphere. Astrophysics and Space Science Library, vol. 10, ed. by R.D.L. Carovillano, J.F. McClay (1968), p. 641
Google Scholar
I. Palmer, Transport coefficients of low-energy cosmic rays in interplanetary space. Rev. Geophys. 20(2), 335–351 (1982)
ADS
Google Scholar
S. Perri, Superdiffusion of relativistic electrons at supernova remnant shocks. Plasma Phys. Control. Fusion 60(1), 014005 (2018). https://doi.org/10.1088/1361-6587/aa8602
ADS
Article
Google Scholar
S. Perri, G. Zimbardo, Evidence of superdiffusive transport of electrons accelerated at interplanetary shocks. Astrophys. J. Lett. 671(2), L177–L180 (2007)
ADS
Google Scholar
S. Perri, G. Zimbardo, Superdiffusive transport of electrons accelerated at corotating interaction regions. J. Geophys. Res. Space Phys. 113, A03107 (2008). https://doi.org/10.1029/2007JA012695
ADS
Article
Google Scholar
S. Perri, G. Zimbardo, Ion superdiffusion at the solar wind termination shock. Astrophys. J. Lett. 693(2), L118–L121 (2009)
ADS
Google Scholar
S. Perri, G. Zimbardo, Superdiffusive shock acceleration. Astrophys. J. 750(2), 87 (2012a)
ADS
Google Scholar
S. Perri, G. Zimbardo, Magnetic variances and pitch-angle scattering times upstream of interplanetary shocks. Astrophys. J. 754(1), 8 (2012b)
ADS
Google Scholar
S. Perri, G. Zimbardo, Evidence for superdiffusive shock acceleration at interplanetary shock waves, J. Phys. Conf. Ser. 642 012020 (2015a). https://doi.org/10.1088/1742-6596/642/1/012020
Article
Google Scholar
S. Perri, G. Zimbardo, Short acceleration times from superdiffusive shock acceleration in the heliosphere. Astrophys. J. 815(1), 75 (2015b)
ADS
Google Scholar
S. Perri, E. Yordanova, V. Carbone, P. Veltri, L. Sorriso-Valvo, R. Bruno, M. André, Magnetic turbulence in space plasmas: scale-dependent effects of anisotropy. J. Geophys. Res. Space Phys. 114(A2), A02102 (2009)
ADS
Google Scholar
S. Perri, G. Zimbardo, F. Effenberger, H. Fichtner, Parameter estimation of superdiffusive motion of energetic particles upstream of heliospheric shocks. A & A 578, A2 (2015). https://doi.org/10.1051/0004-6361/201425295. 1505.07980
ADS
Article
Google Scholar
S. Perri, E. Amato, G. Zimbardo, Transport of relativistic electrons at shocks in shell-type supernova remnants: diffusive and superdiffusive regimes. Astron. Astrophys. 596, A34 (2016). https://doi.org/10.1051/0004-6361/201628767
ADS
Article
Google Scholar
S. Perri, F. Pucci, F. Malara, G. Zimbardo, On the power-law distribution of pitch-angle scattering times in solar wind turbulence. Sol. Phys. 294(3), 34 (2019)
ADS
Google Scholar
S. Perri, G. Prete, F. Malara, F. Pucci, G. Zimbardo, The influence of magnetic turbulence on the energetic particle transport upstream of shock waves. Atmosphere 12(4), 508 (2021)
ADS
Google Scholar
D. Perrone, R.O. Dendy, I. Furno, R. Sanchez, G. Zimbardo, A. Bovet, A. Fasoli, K. Gustafson, S. Perri, P. Ricci, F. Valentini, Nonclassical transport and particle-field coupling: from laboratory plasmas to the solar wind. Space Sci. Rev. 178(2–4), 233–270 (2013)
ADS
Google Scholar
V. Petrosian, Particle acceleration in solar flares and associated CME shocks. Astrophys. J. 830(1), 28 (2016). https://doi.org/10.3847/0004-637X/830/1/28. 1605.04022
ADS
Article
Google Scholar
V. Petrosian, A.M. Bykov, Particle acceleration mechanisms. Space Sci. Rev. 134(1–4), 207–227 (2008). https://doi.org/10.1007/s11214-008-9315-6. 0801.0923
ADS
Article
Google Scholar
J.M. Pittard, G.E. Romero, G.S. Vila, Particle acceleration and non-thermal emission in colliding-wind binary systems. Mon. Not. R. Astron. Soc. 504(3), 4204–4225 (2021). https://doi.org/10.1093/mnras/stab1107. 2104.07399
ADS
Article
Google Scholar
P. Pommois, G. Zimbardo, P. Veltri, Anomalous, non-Gaussian transport of charged particles in anisotropic magnetic turbulence. Phys. Plasmas 14(1), 012311 (2007). https://doi.org/10.1063/1.2434795
ADS
Article
Google Scholar
M.H. Pope, D.B. Melrose, Diffusive shock acceleration by multiple shock fronts with differing properties. Publ. Astron. Soc. Aust. 11(2), 175–179 (1994)
ADS
Google Scholar
M.S. Potgieter, The modulation of galactic cosmic rays in the heliosphere: theory and models. Space Sci. Rev. 83, 147–158 (1998)
ADS
Google Scholar
P.L. Prinsloo, R.D. Strauss, J.A. le Roux, Acceleration of solar wind particles by traveling interplanetary shocks. Astrophys. J. 878(2), 144 (2019). https://doi.org/10.3847/1538-4357/ab211b. 1905.08458
ADS
Article
Google Scholar
V. Ptuskin, V. Zirakashvili, E.S. Seo, Spectra of cosmic-ray protons and helium produced in supernova remnants. Astrophys. J. 763(1), 47 (2013). https://doi.org/10.1088/0004-637X/763/1/47. 1212.0381
ADS
Article
Google Scholar
F. Pucci, F. Malara, S. Perri, G. Zimbardo, L. Sorriso-Valvo, F. Valentini, Energetic particle transport in the presence of magnetic turbulence: influence of spectral extension and intermittency. Mon. Not. R. Astron. Soc. 459, 3395–3406 (2016). https://doi.org/10.1093/mnras/stw877
ADS
Article
Google Scholar
B.R. Ragot, J.G. Kirk, Anomalous transport of cosmic ray electrons. Astron. Astrophys. 327, 432–440 (1997). astro-ph/9708041
ADS
Google Scholar
S.P. Reynolds, B.M. Gaensler, F. Bocchino, Magnetic fields in supernova remnants and pulsar-wind nebulae. Space Sci. Rev. 166, 231–261 (2012). https://doi.org/10.1007/s11214-011-9775-y. 1104.4047
ADS
Article
Google Scholar
J.D. Richardson, J.C. Kasper, C. Wang, J.W. Belcher, A.J. Lazarus, Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454(7200), 63–66 (2008). https://doi.org/10.1038/nature07024
ADS
Article
Google Scholar
J.D. Riordan, A. Pe’er, Pitch-angle diffusion and Bohm-type approximations in diffusive shock acceleration. Astrophys. J. 873(1), 13 (2019). https://doi.org/10.3847/1538-4357/aaffd2. 1810.11817
ADS
Article
Google Scholar
D. Ruffolo, Effect of adiabatic deceleration on the focused transport of solar cosmic rays. Astrophys. J. 442, 861 (1995)
ADS
Google Scholar
K. Scherer, H. Fichtner, M. Lazar, Regularized \(\kappa \)-distributions with non-diverging moments. Europhys. Lett. 120(50), 002 (2017). https://doi.org/10.1209/0295-5075/120/50002
Article
Google Scholar
K. Scherer, M. Lazar, E. Husidic, H. Fichtner, Moments of the anisotropic regularized \(\kappa\)-distributions. Astrophys. J. 880(2), 118 (2019). https://doi.org/10.3847/1538-4357/ab1ea1. 1906.01406
ADS
Article
Google Scholar
K.M. Schure, A.R. Bell, L. O’C Drury, A.M. Bykov, Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev. 173(1–4), 491–519 (2012). https://doi.org/10.1007/s11214-012-9871-7. 1203.1637
ADS
Article
Google Scholar
S.J. Schwartz, M.F. Thomsen, S.J. Bame, J. Stansberry, Electron heating and the potential jump across fast mode shocks. J. Geophys. Res. 93, 12,923–12,931 (1988). https://doi.org/10.1029/JA093iA11p12923
ADS
Article
Google Scholar
A. Shalchi, Applicability of the Taylor-Green-Kubo formula in particle diffusion theory. Phys. Rev. E 83(4), 046402 (2011). https://doi.org/10.1103/PhysRevE.83.046402
ADS
Article
Google Scholar
A. Shalchi, I. Kourakis, A new theory for perpendicular transport of cosmic rays. Astron. Astrophys. 470(2), 405–409 (2007)
ADS
MATH
Google Scholar
A. Shalchi, G.M. Webb, J.A. le Roux, Parallel transport of cosmic rays for non-diffusive pitch-angle scattering: I. Using the standard Fokker-Planck equation. Phys. Scr. 85(6), 065901 (2012)
ADS
MATH
Google Scholar
N. Sioulas, H. Isliker, L. Vlahos, A. Koumtzis, T. Pisokas, Superdiffusive stochastic Fermi acceleration in space and energy. Mon. Not. R. Astron. Soc. 491(3), 3860–3869 (2020)
ADS
Google Scholar
L. Sironi, U. Keshet, M. Lemoine, Relativistic shocks: particle acceleration and magnetization. Space Sci. Rev. 191(1–4), 519–544 (2015). https://doi.org/10.1007/s11214-015-0181-8. 1506.02034
ADS
Article
Google Scholar
I.M. Sokolov, J. Klafter, From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. Chaos 15(2), 026103 (2005)
ADS
MathSciNet
MATH
Google Scholar
B.U.Ö. Sonnerup, J.L.J. Cahill, Explorer 12 observations of the magnetopause current layer. J. Geophys. Res. 73(5), 1757 (1968)
ADS
Google Scholar
C.D. Steenberg, H. Moraal, Form of the anomalous cosmic ray spectrum at the solar wind termination shock. J. Geophys. Res. 104(24), 24,879–24,884 (1999). https://doi.org/10.1029/1999JA900336.
ADS
Article
Google Scholar
R. Stern, F. Effenberger, H. Fichtner, T. Schäfer, The space-fractional diffusion-advection equation: analytical solutions and critical assessment of numerical solutions. Fract. Calc. Appl. Anal. 17(1), 171–190 (2014)
MathSciNet
MATH
Google Scholar
T. Sugiyama, D. Shiota, Sign for super-diffusive transport of energetic ions associated with a coronal-mass-ejection-driven interplanetary shock. Astrophys. J. Lett. 731, L34 (2011). https://doi.org/10.1088/2041-8205/731/2/L34
ADS
Article
Google Scholar
J.A. Tessein, W.H. Matthaeus, M. Wan, K.T. Osman, D. Ruffolo, J. Giacalone, Association of suprathermal particles with coherent structures and shocks. Astrophys. J. Lett. 776(1), L8 (2013)
ADS
Google Scholar
J.A. Tessein, D. Ruffolo, W.H. Matthaeus, M. Wan, J. Giacalone, M. Neugebauer, Effect of coherent structures on energetic particle intensity in the solar wind at 1 AU. Astrophys. J. 812(1), 68 (2015). https://doi.org/10.1088/0004-637X/812/1/68
ADS
Article
Google Scholar
R.L. Tokar, C.H. Aldrich, D.W. Forslund, K.B. Quest, Nonadiabatic electron heating at high-Mach-number perpendicular shocks. Phys. Rev. Lett. 56, 1059–1062 (1986). https://doi.org/10.1103/PhysRevLett.56.1059
ADS
Article
Google Scholar
R.A. Treumann, W. Baumjohann, The differential cosmic ray energy flux in the light of an ultrarelativistic generalized Lorentzian thermodynamics. Astrophys. Space Sci. 363(2), 37 (2018). https://doi.org/10.1007/s10509-018-3255-8
ADS
Article
Google Scholar
D. Trotta, D. Burgess, G. Prete, S. Perri, G. Zimbardo, Particle transport in hybrid PIC shock simulations: a comparison of diagnostics. Mon. Not. R. Astron. Soc. 491, 580–595 (2020). https://doi.org/10.1093/mnras/stz2760
ADS
Article
Google Scholar
D. Trotta, F. Valentini, D. Burgess, S. Servidio, Phase space transport in the interaction between shocks and plasma turbulence. Proc. Natl. Acad. Sci. 118(21), 2026764118 (2021)
MathSciNet
Google Scholar
C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988). https://doi.org/10.1007/BF01016429
ADS
MathSciNet
Article
MATH
Google Scholar
C. Tsallis, D.J. Bukman, Anomalous diffusion in the presence of external forces: exact time-dependent solutions and their thermostatistical basis. Phys. Rev. E 54, R2197–R2200 (1996). https://doi.org/10.1103/PhysRevE.54.R2197. cond-mat/9511007
ADS
Article
Google Scholar
D.L. Turner, L.B. Wilson, T.Z. Liu, I.J. Cohen, S.J. Schwartz, A. Osmane, J.F. Fennell, J.H. Clemmons, J.B. Blake, J. Westlake, B.H. Mauk, A.N. Jaynes, T. Leonard, D.N. Baker, R.J. Strangeway, C.T. Russell, D.J. Gershman, L. Avanov, B.L. Giles, R.B. Torbert, J. Broll, R.G. Gomez, S.A. Fuselier, J.L. Burch, Autogenous and efficient acceleration of energetic ions upstream of Earth’s bow shock. Nature 561(7722), 206–210 (2018). https://doi.org/10.1038/s41586-018-0472-9
ADS
Article
Google Scholar
R.J. Van Weeren, G. Brunetti, M. Brüggen, F. Andrade-Santos, G.A. Ogrean, W.L. Williams, H.J.A. Röttgering, W.A. Dawson, W.R. Forman, F. de Gasperin, M.J. Hardcastle, C. Jones, G.K. Miley, D.A. Rafferty, L. Rudnick, J. Sabater, C.L. Sarazin, T.W. Shimwell, A. Bonafede, P.N. Best, L. Bîrzan, R. Cassano, K.T. Chyży, J.H. Croston, T.J. Dijkema, T. Enßlin, C. Ferrari, G. Heald, M. Hoeft, C. Horellou, M.J. Jarvis, R.P. Kraft, M. Mevius, H.T. Intema, S.S. Murray, E. Orrú, R. Pizzo, S.S. Sridhar, A. Simionescu, A. Stroe, S. van der Tol, G.J. White, LOFAR, VLA, and Chandra observations of the Toothbrush Galaxy cluster. Astrophys. J. 818, 204 (2016). https://doi.org/10.3847/0004-637X/818/2/204. 1601.06029
ADS
Article
Google Scholar
I.Y. Vasko, O.V. Agapitov, F.S. Mozer, J.W. Bonnell, A.V. Artemyev, V.V. Krasnoselskikh, Y. Tong, Electrostatic steepening of whistler waves. Phys. Rev. Lett. 120(19), 195101 (2018). https://doi.org/10.1103/PhysRevLett.120.195101
ADS
Article
Google Scholar
V.M. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 173, 2839–2884 (1968). https://doi.org/10.1029/JA073i009p02839
ADS
Article
Google Scholar
T. Vieu, S. Gabici, V. Tatischeff, Particle acceleration at colliding shock waves. Mon. Not. R. Astron. Soc. 494(3), 3166–3176 (2020). https://doi.org/10.1093/mnras/staa799. 2003.03411
ADS
Article
Google Scholar
L. Vlahos, H. Isliker, F. Lepreti, Particle acceleration in an evolving network of unstable current sheets. Astrophys. J. 608(1), 540–553 (2004)
ADS
Google Scholar
L. Vlahos, T. Pisokas, H. Isliker, V. Tsiolis, A. Anastasiadis, Particle acceleration and heating by turbulent reconnection. Astrophys. J. Lett. 827(1), L3 (2016)
ADS
Google Scholar
A. Vourlidas, S.T. Wu, A.H. Wang, P. Subramanian, R.A. Howard, Direct detection of a coronal mass ejection-associated shock in large angle and spectrometric coronagraph experiment white-light images. Astrophys. J. 598(2), 1392–1402 (2003)
ADS
Google Scholar
D. Walter, H. Fichtner, Y. Litvinenko, A perturbative approach to a nonlinear advection-diffusion equation of particle transport. Phys. Plasmas 27(8), 082901 (2020). https://doi.org/10.1063/5.0003582
ADS
Article
Google Scholar
X. Wang, J. Giacalone, Y. Yan, M. Ding, C. Li, H. Lu, H. Shan, Particle acceleration at the pileup collision of the twin shock. Astrophys. J. 885(1), 66 (2019). https://doi.org/10.3847/1538-4357/ab4655
ADS
Article
Google Scholar
G. Webb, G. Zank, E.K. Kaghashvili, J. Le Roux, Compound and perpendicular diffusion of cosmic rays and random walk of the field lines. I. Parallel particle transport models. Astrophys. J. 651(1), 211 (2006)
ADS
Google Scholar
R.L. White, W. Chen, Particle acceleration, X-rays, and gamma-rays from winds. Astrophys. Space Sci. 221(1–2), 295–307 (1994). https://doi.org/10.1007/BF01091161
ADS
Article
Google Scholar
W.J. Wykes, S.C. Chapman, G. Rowlands, Stochastic pitch angle diffusion due to electron-whistler wave-particle interactions. Phys. Plasmas 8(6), 2953–2962 (2001). https://doi.org/10.1063/1.1371953
ADS
Article
Google Scholar
P.H. Yoon, M. Lazar, K. Scherer, H. Fichtner, R. Schlickeiser, Modified \(\kappa\)-distribution of solar wind electrons and steady-state Langmuir turbulence. Astrophys. J. 868(2), 131 (2018). https://doi.org/10.3847/1538-4357/aaeb94
ADS
Article
Google Scholar
G.P. Zank, Y. Zhou, W.H. Matthaeus, W.K.M. Rice, The interaction of turbulence with shock waves: a basic model. Phys. Fluids 14(11), 3766–3774 (2002)
ADS
MathSciNet
MATH
Google Scholar
G.P. Zank, J. Heerikhuisen, N.V. Pogorelov, R. Burrows, D. McComas, Microstructure of the heliospheric termination shock: implications for energetic neutral atom observations. Astrophys. J. 708(2), 1092–1106 (2010). https://doi.org/10.1088/0004-637X/708/2/1092
ADS
Article
Google Scholar
G.P. Zank, J.A. le Roux, G.M. Webb, A. Dosch, O. Khabarova, Particle acceleration via reconnection processes in the supersonic solar wind. Astrophys. J. 797(1), 28 (2014)
ADS
Google Scholar
G.P. Zank, P. Hunana, P. Mostafavi, J.A. le Roux, G. Li, G.M. Webb, O. Khabarova, Particle acceleration by combined diffusive shock acceleration and downstream multiple magnetic island acceleration, J. Phys. Conf. Ser. 642, 012031 (2015a)
Google Scholar
G.P. Zank, P. Hunana, P. Mostafavi, J.A. Le Roux, G. Li, G.M. Webb, O. Khabarova, A. Cummings, E. Stone, R. Decker, Diffusive shock acceleration and reconnection acceleration processes. Astrophys. J. 814(2), 137 (2015b)
ADS
Google Scholar
B. Zieger, M. Opher, G. Tóth, R.B. Decker, J.D. Richardson, Constraining the pickup ion abundance and temperature through the multifluid reconstruction of the Voyager 2 termination shock crossing. J. Geophys. Res. 120(9), 7130–7153 (2015). https://doi.org/10.1002/2015JA021437
Article
Google Scholar
G. Zimbardo, S. Perri, Superdiffusive transport upstream of the solar wind termination shock, in Twelfth International Solar Wind Conference, ed. by M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet, F. Pantellini. American Institute of Physics Conference Series, vol. 1216 (2010), pp. 584–587. https://doi.org/10.1063/1.3395933
Chapter
Google Scholar
G. Zimbardo, S. Perri, From Lévy walks to superdiffusive shock acceleration. Astrophys. J. 778(1), 35 (2013)
ADS
Google Scholar
G. Zimbardo, S. Perri, Non-Markovian pitch-angle scattering as the origin of particle superdiffusion parallel to the magnetic field. Astrophys. J. 903(2), 105 (2020). https://doi.org/10.3847/1538-4357/abb951
ADS
Article
Google Scholar
G. Zimbardo, P. Pommois, P. Veltri, Superdiffusive and subdiffusive transport of energetic particles in solar wind anisotropic magnetic turbulence. Astrophys. J. Lett. 639(2), L91 (2006)
ADS
Google Scholar
G. Zimbardo, S. Perri, P. Pommois, P. Veltri, Anomalous particle transport in the heliosphere. Adv. Space Res. 49(11), 1633–1642 (2012)
ADS
Google Scholar
G. Zimbardo, E. Amato, A. Bovet, F. Effenberger, A. Fasoli, H. Fichtner, I. Furno, K. Gustafson, P. Ricci, S. Perri, Superdiffusive transport in laboratory and astrophysical plasmas. J. Plasma Phys. 81(6), 495810601 (2015). https://doi.org/10.1017/S0022377815001117
Article
Google Scholar
G. Zimbardo, S. Perri, F. Effenberger, H. Fichtner, Fractional Parker equation for the transport of cosmic rays: steady-state solutions. A & A 607, A7 (2017). https://doi.org/10.1051/0004-6361/201731179
ADS
Article
Google Scholar
G. Zumofen, J. Klafter, Scale-invariant motion in intermittent chaotic systems. Phys. Rev. E 47, 851–863 (1993). https://doi.org/10.1103/PhysRevE.47.851
ADS
Article
MATH
Google Scholar