Skip to main content
Log in

Observational Signatures of Particle Acceleration in Supernova Remnants

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We evaluate the current status of supernova remnants as the sources of Galactic cosmic rays. We summarize observations of supernova remnants, covering the whole electromagnetic spectrum and describe what these observations tell us about the acceleration processes by high Mach number shock fronts. We discuss the shock modification by cosmic rays, the shape and maximum energy of the cosmic-ray spectrum and the total energy budget of cosmic rays in and surrounding supernova remnants. Additionally, we discuss problems with supernova remnants as main sources of Galactic cosmic rays, as well as alternative sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Note that this is the velocity relevant for the physical conditions behind the shock front (outside of the reverse shock).

  2. The upstream region is the region in front of the shock, i.e. outside the remnant for the forward shock.

  3. Note that the power-law index of a radio spectrum (α) is defined for a flux energy density, whereas in X-rays one use the spectral index (Γ) for the number density flux, the relation between the two indices is Γ=α+1. If the number density of the electron distribution is labeled q, we have that q=2α+1=2Γ−1.

  4. Note that some regions were excluded from the fit, for example for Tycho (West) only the emission between 237′′ and 255′′ was fitted, as the emission closer to the center may also have a thermal bremsstrahlung origin.

  5. There has been little attention to this issue, but see http://online.itp.ucsb.edu/online/astroplasmas_c09/vink/pdf/Vink_AstroPlasmasConf_KITP.pdf.

  6. Note that Katsuda et al. (2010b) uses a similar formalism, but with slightly different dependencies as they also consider the change in the amplified magnetic field.

  7. Sometimes the effect of multiplicity and cross section is combined in an inclusive cross section \(\sigma(E_{\mathrm{p,incl}})\) (e.g. Dermer 1986; Kamae et al. 2006).

  8. For example, for the Sedov solution in a uniform medium, Rt 2/5 we have F=4πn H(R)R 2 vt 1/5. Whereas for the Sedov solution inside a stellar wind, Rt 2/3, we get F=4πn H(R)R 2 vvt −1/3.

References

  • A.A. Abdo (Fermi LAT Collaboration), Observations of the young supernova remnant RX J1713.7-3946 with the Fermi large area telescope (2011). arXiv:1103.5727

  • A.A. Abdo et al., Fermi LAT discovery of extended gamma-ray emission in the direction of supernova remnant W51C. Astrophys. J. Lett. 706, 1–6 (2009). arXiv:0910.0908

    Article  ADS  Google Scholar 

  • A.A. Abdo et al., Fermi large area telescope observations of the supernova remnant W28 (G6.4-0.1). Astrophys. J. 718, 348–356 (2010a)

    Article  ADS  Google Scholar 

  • A.A. Abdo et al., Fermi-Lat discovery of GeV gamma-ray emission from the young supernova remnant Cassiopeia A. Astrophys. J. Lett. 710, L92–L97 (2010b). arXiv:1001.1419

    Article  ADS  Google Scholar 

  • A.A. Abdo et al., Fermi-LAT study of gamma-ray emission in the direction of supernova remnant W49B. Astrophys. J. 722, 1303–1311 (2010c)

    Article  ADS  Google Scholar 

  • A.A. Abdo et al., Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT. Science 327, 1103 (2010d)

    Article  ADS  Google Scholar 

  • A.A. Abdo et al., Observation of supernova remnant IC 443 with the Fermi large area telescope. Astrophys. J. 712, 459–468 (2010e). arXiv:1002.2198

    Article  ADS  Google Scholar 

  • A. Abramowski, F. Acero, F. Aharonian et al. (HESS Collaboration), Discovery of extended VHE∖gamma-ray emission from the vicinity of the young massive stellar cluster Westerlund 1 (2011a). arXiv:1111.2043

  • A. Abramowski, F. Acero, F. Aharonian et al. (HESS Collaboration), A new SNR with TeV shell-type morphology: HESS J1731-347. Astron. Astrophys. 531, A81 (2011b). arXiv:1105.3206

    Article  ADS  Google Scholar 

  • A. Abramowski, F. Acero, F. Aharonian et al. (HESS Collaboration), Revisiting the Westerlund 2 field with the HESS telescope array. Astron. Astrophys. 525, A46 (2011c). arXiv:1009.3012

    Article  ADS  Google Scholar 

  • V.A. Acciari, E. Aliu, T. Arlen, T. Aune et al., Observation of extended very high energy emission from the supernova remnant IC 443 with VERITAS. Astrophys. J. Lett. 698, 133–137 (2009). arXiv:0905.3291

    Article  ADS  Google Scholar 

  • V.A. Acciari et al., Observations of the shell-type supernova remnant Cassiopeia A at TeV energies with VERITAS. Astrophys. J. 714, 163–169 (2010). arXiv:1002.2974

    Article  ADS  Google Scholar 

  • V.A. Acciari, E. Aliu, T. Arlen, T. Aune et al., Discovery of TeV gamma-ray emission from Tycho’s supernova remnant. Astrophys. J. Lett. 730, 20L (2011). arXiv:1102.3871

    Article  ADS  Google Scholar 

  • F. Acero, J. Ballet, A. Decourchelle, The gas density around SN 1006. Astron. Astrophys. 475, 883–890 (2007). arXiv:0709.0956

    Article  ADS  Google Scholar 

  • F. Acero, F. Aharonian, A.G. Akhperjanian, G. Anton et al., Detection of gamma rays from a starburst galaxy. Science 326, 1080–1082 (2009a). arXiv:0909.4651

    Article  ADS  Google Scholar 

  • F. Acero, J. Ballet, A. Decourchelle, M. Lemoine-Goumard et al., A joint spectro-imaging analysis of the XMM-Newton and HESS observations of the supernova remnant RX J1713.7-3946. Astron. Astrophys. 505, 157–167 (2009b). arXiv:0906.1073

    Article  ADS  Google Scholar 

  • F. Acero et al., First detection of VHE γ-rays from SN 1006 by HESS. Astron. Astrophys. 516, A62 (2010)

    Article  ADS  Google Scholar 

  • A. Achterberg, R.D. Blandford, S.P. Reynolds, Evidence for enhanced MHD turbulence outside sharp-rimmed supernova remnants. Astron. Astrophys. 281, 220–230 (1994)

    ADS  Google Scholar 

  • M. Ackermann, M. Ajello, A. Allafort et al., A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble. Science 334, 1103–1107 (2011)

    Article  ADS  Google Scholar 

  • F. Aharonian et al. (HESS Collaboration), H.E.S.S. observations of the supernova remnant RX J0852.0-4622: shell-type morphology and spectrum of a widely extended VHE gamma-ray source (2006). arXiv:astro-ph/0612495

  • F.A. Aharonian, A.M. Atoyan, On the emissivity of π 0-decay gamma radiation in the vicinity of accelerators of galactic cosmic rays. Astron. Astrophys. 309, 917–928 (1996)

    ADS  Google Scholar 

  • F.A. Aharonian, A.M. Atoyan, On the origin of TeV radiation of SN 1006. Astron. Astrophys. 351, 330–340 (1999)

    ADS  Google Scholar 

  • F.A. Aharonian, A.M. Atoyan, Broad-band diffuse gamma ray emission of the galactic disk. Astron. Astrophys. 362, 937–952 (2000). arXiv:astro-ph/0009009

    ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, J. Barrio et al., Evidence for TeV gamma ray emission from Cassiopeia A. Astron. Astrophys. 370, 112–120 (2001)

    Article  ADS  Google Scholar 

  • F.A. Aharonian et al., High-energy particle acceleration in the shell of a supernova remnant. Nature 432, 75–77 (2004). arXiv:astro-ph/0411533

    Article  ADS  Google Scholar 

  • F. Aharonian et al., Detection of TeV γ-ray emission from the shell-type supernova remnant RX J0852.0-4622 with HESS. Astron. Astrophys. 437, L7–L10 (2005)

    Article  ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, M. Beilicke et al., Discovery of very-high-energy γ-rays from the galactic centre ridge. Nature 439, 695–698 (2006). arXiv:astro-ph/0603021

    Article  ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, M. Beilicke et al., Detection of extended very-high-energy γ-ray emission towards the young stellar cluster Westerlund 2. Astron. Astrophys. 467, 1075–1080 (2007). arXiv:astro-ph/0703427

    Article  ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, U. Barres de Almeida, A.R. Bazer-Bachi et al., Discovery of a VHE gamma-ray source coincident with the supernova remnant CTB 37A. Astron. Astrophys. 490, 685–693 (2008a). arXiv:0803.0702

    Article  ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, U. Barres de Almeida, A.R. Bazer-Bachi et al., Exploring a SNR/molecular cloud association within HESS J1745-303. Astron. Astrophys. 483, 509–517 (2008b). arXiv:0803.2844

    Article  ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, B. Behera et al., Discovery of very high energy gamma-ray emission coincident with molecular clouds in the W 28 (G6.4-0.1) field. Astron. Astrophys. 481, 401–410 (2008c). arXiv:0801.3555

    Article  ADS  Google Scholar 

  • F. Aharonian et al., Discovery of gamma-ray emission from the shell-type supernova remnant RCW 86 with Hess. Astrophys. J. 692, 1500–1505 (2009)

    Article  ADS  Google Scholar 

  • F. Aharonian, A. Bykov, E. Parizot, V. Ptuskin et al., Cosmic rays in galactic and extragalactic magnetic fields. Space Sci. Rev. 268 (2011). arXiv:1105.0131

  • J. Albert et al., Discovery of very high energy gamma radiation from IC 443 with the MAGIC telescope. Astrophys. J. Lett. 664, L87–L90 (2007a). arXiv:0705.3119

    Article  ADS  Google Scholar 

  • J. Albert et al., Observation of VHE γ-rays from Cassiopeia A with the MAGIC telescope. Astron. Astrophys. 474, 937–940 (2007b). arXiv:0706.4065

    Article  ADS  Google Scholar 

  • G.E. Allen et al., Evidence of X-ray synchrotron emission from electrons accelerated to 40 TeV in the supernova remnant Cassiopeia A. Astrophys. J. Lett. 487, L97–L100 (1997)

    Article  ADS  Google Scholar 

  • G.E. Allen, E.V. Gotthelf, R. Petre, Evidence of 10-TeV to 100-TeV electrons in supernova remnants, in The Proceedings of the 26th International Cosmic Ray Conference (1999). arXiv:astro-ph/9908209

    Google Scholar 

  • G.E. Allen, J.C. Houck, S.J. Sturner, Evidence of a curved synchrotron spectrum in the supernova remnant SN 1006. Astrophys. J. 683, 773–785 (2008). arXiv:0807.1702

    Article  ADS  Google Scholar 

  • T. Amano, K. Torii, T. Hayakawa, Y. Fukui, Stochastic acceleration of cosmic rays in the central molecular zone of the galaxy (2011). arXiv:1110.3140

  • E. Amato, P. Blasi, Non-linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence. Mon. Not. R. Astron. Soc. 371, 1251–1258 (2006). arXiv:astro-ph/0606592

    Article  ADS  Google Scholar 

  • B. Aschenbach, R. Egger, J. Trümper, Discovery of explosion fragments outside the Vela supernova remnant shock-wave boundary. Nature 373, 587–590 (1995)

    Article  ADS  Google Scholar 

  • A.I. Asvarov, O.H. Guseinov, F.K. Kasumov, V.A. Dogel, The hard X-ray emission of the young supernova remnants. Astron. Astrophys. 229, 196–200 (1990)

    ADS  Google Scholar 

  • W.B. Atwood, A.A. Abdo, M. Ackermann, W. Althouse et al., The large area telescope on the Fermi gamma-ray space telescope mission. Astrophys. J. 697, 1071–1102 (2009). arXiv:0902.1089

    Article  ADS  Google Scholar 

  • W.I. Axford, The origins of high-energy cosmic rays. Astrophys. J. Suppl. Ser. 90, 937–944 (1994)

    Article  ADS  Google Scholar 

  • W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in International Cosmic Ray Conference, vol. 11 (1977), pp. 132–137

    Google Scholar 

  • W. Baade, F. Zwicky, Cosmic rays from super-novae. Proc. Natl. Acad. Sci. USA 20, 259–263 (1934)

    Article  ADS  Google Scholar 

  • J.W.M. Baars, R. Genzel, I.I.K. Pauliny-Toth, A. Witzel, The absolute spectrum of CAS A—an accurate flux density scale and a set of secondary calibrators. Astron. Astrophys. 61, 99–106 (1977)

    ADS  Google Scholar 

  • C. Badenes, K.J. Borkowski, J.P. Hughes, U. Hwang et al., Constraints on the physics of type Ia supernovae from the X-ray spectrum of the Tycho supernova remnant. Astrophys. J. 645, 1373–1391 (2006). arXiv:astro-ph/0511140

    Article  ADS  Google Scholar 

  • F.K. Baganoff, Y. Maeda, M. Morris, M.W. Bautz et al., Chandra X-ray spectroscopic imaging of Sagittarius A* and the central parsec of the galaxy. Astrophys. J. 591, 891–915 (2003). arXiv:astro-ph/0102151

    Article  ADS  Google Scholar 

  • J. Ballet, X-ray synchrotron emission from supernova remnants. Adv. Space Res. 37, 1902–1908 (2006). arXiv:astro-ph/0503309

    Article  ADS  Google Scholar 

  • A. Bamba, K. Koyama, H. Tomida, Discovery of non-thermal X-rays from the shell of RCW 86. Publ. Astron. Soc. Jpn. 52, 1157–1163 (2000)

    ADS  Google Scholar 

  • A. Bamba, M. Ueno, H. Nakajima, K. Koyama, Thermal and nonthermal X-rays from the large Magellanic cloud superbubble 30 doradus C. Astrophys. J. 602, 257–263 (2004)

    Article  ADS  Google Scholar 

  • A. Bamba, R. Yamazaki, T. Yoshida, T. Terasawa et al., A spatial and spectral study of nonthermal filaments in historical supernova remnants: observational results with Chandra. Astrophys. J. 621, 793–802 (2005). arXiv:astro-ph/0411326

    Article  ADS  Google Scholar 

  • R. Bandiera, O. Petruk, Analytic solutions for the evolution of radiative supernova remnants. Astron. Astrophys. 419, 419–423 (2004). arXiv:astro-ph/0402598

    Article  ADS  Google Scholar 

  • R. Barbon, F. Ciatti, L. Rosino, Photometric properties of type II supernovae. Astron. Astrophys. 72, 287–292 (1979)

    ADS  Google Scholar 

  • N. Bartel, Supernova VLBI, in Approaching Micro-arcsecond Resolution with VSOP-2: Astrophysics and Technologies, ed. by Y. Hagiwara, E. Fomalont, M. Tsuboi, M. Yasuhiro. Astronomical Society of the Pacific Conference Series, vol. 402 (2009), p. 243

    Google Scholar 

  • J.K. Becker, J.H. Black, M. Safarzadeh, F. Schuppan, Tracing the sources of cosmic rays with molecular ions. Astrophys. J. Lett. 739, L43 (2011). arXiv:1106.4740

    Article  ADS  Google Scholar 

  • G. Bélanger, A. Goldwurm, M. Renaud, R. Terrier et al., A persistent high-energy flux from the heart of the Milky Way: INTEGRAL’s view of the galactic center. Astrophys. J. 636, 275–289 (2006). arXiv:astro-ph/0508128

    Article  ADS  Google Scholar 

  • A.R. Bell, The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 182, 443–455 (1978)

    ADS  Google Scholar 

  • A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004)

    Article  ADS  Google Scholar 

  • A.R. Bell, The interaction of cosmic rays and magnetized plasma. Mon. Not. R. Astron. Soc. 358, 181–187 (2005)

    Article  ADS  Google Scholar 

  • A.R. Bell, S.G. Lucek, Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 321, 433–438 (2001)

    Article  ADS  Google Scholar 

  • E.G. Berezhko, D.C. Ellison, A simple model of nonlinear diffusive shock acceleration. Astrophys. J. 526, 385–399 (1999)

    Article  ADS  Google Scholar 

  • E.G. Berezhko, H.J. Völk, Hadronic versus leptonic origin of the gamma-ray emission from supernova remnant RX J1713.7-3946. Astron. Astrophys. 492, 695–701 (2008). arXiv:0810.0988

    Article  ADS  Google Scholar 

  • E.G. Berezhko, H.J. Völk, Nonthermal and thermal emission from the supernova remnant RX J1713.7-3946. Astron. Astrophys. 511, A34 (2010). arXiv:0910.2094

    Article  ADS  Google Scholar 

  • E.G. Berezhko, L.T. Ksenofontov, V.S. Ptuskin, V.N. Zirakashvili et al., Cosmic ray production in supernova remnants including reacceleration: the secondary to primary ratio. Astron. Astrophys. 410, 189–198 (2003a)

    Article  ADS  Google Scholar 

  • E.G. Berezhko, L.T. Ksenofontov, H.J. Völk, Confirmation of strong magnetic field amplification and nuclear cosmic ray acceleration in SN 1006. Astron. Astrophys. 412, L11–L14 (2003b)

    Article  ADS  Google Scholar 

  • W.R. Binns, M.E. Wiedenbeck, M. Arnould, A.C. Cummings et al., OB associations, Wolf Rayet stars, and the origin of galactic cosmic rays. Space Sci. Rev. 130, 439–449 (2007). arXiv:0707.4645

    Article  ADS  Google Scholar 

  • G.S. Bisnovatyi-Kogan, S.A. Silich, Shock-wave propagation in the nonuniform interstellar medium. Rev. Mod. Phys. 67, 661–712 (1995)

    Article  ADS  Google Scholar 

  • J. Bland-Hawthorn, M. Cohen, The large-scale bipolar wind in the galactic center. Astrophys. J. 582, 246–256 (2003). arXiv:astro-ph/0208553

    Article  ADS  Google Scholar 

  • R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987)

    Article  ADS  Google Scholar 

  • R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. Lett. 221, L29–L32 (1978)

    Article  ADS  Google Scholar 

  • P. Blasi, S. Gabici, G. Vannoni, On the role of injection in kinetic approaches to non-linear particle acceleration at non-relativistic shock waves. Mon. Not. R. Astron. Soc. 361, 907–918 (2005). arXiv:astro-ph/0505351

    Article  ADS  Google Scholar 

  • J.A.M. Bleeker et al., Cassiopeia A: on the origin of the hard X-ray continuum and the implication of the observed O VIII Ly-α/Ly-β distribution. Astron. Astrophys. 365, L225–L230 (2001)

    Article  ADS  Google Scholar 

  • J.M. Blondin, D.C. Ellison, Rayleigh-Taylor instabilities in young supernova remnants undergoing efficient particle acceleration. Astrophys. J. 560, 244–253 (2001). arXiv:astro-ph/0104024

    Article  ADS  Google Scholar 

  • K.J. Borkowski, J. Rho, S.P. Reynolds, K.K. Dyer, Thermal and nonthermal X-ray emission in supernova remnant RCW 86. Astrophys. J. 550, 334–345 (2001)

    Article  ADS  Google Scholar 

  • K.J. Borkowski, S.P. Reynolds, D.A. Green, U. Hwang et al., Radioactive scandium in the youngest galactic supernova remnant G1.9+0.3. Astrophys. J. Lett. 724, L161–L165 (2010). arXiv:1006.3552

    Article  ADS  Google Scholar 

  • A. Boulares, D.P. Cox, Application of cosmic-ray shock theories to the Cygnus loop—an alternative model. Astrophys. J. 333, 198–218 (1988)

    Article  ADS  Google Scholar 

  • F. Brun, M. de Naurois, W. Hofmann, S. Carrigan et al., Discovery of VHE gamma-ray emission from the W49 region with H.E.S.S (2011). arXiv:1104.5003

  • Y.M. Butt, T.A. Porter, B. Katz, E. Waxman, X-ray hotspot flares and implications for cosmic ray acceleration and magnetic field amplification in supernova remnants. Mon. Not. R. Astron. Soc. 386, L20–L22 (2008). arXiv:0801.4954

    Article  ADS  Google Scholar 

  • A.M. Bykov, Particle acceleration and nonthermal phenomena in superbubbles. Space Sci. Rev. 99, 317–326 (2001)

    Article  ADS  Google Scholar 

  • A.M. Bykov, X-ray line emission from supernova ejecta fragments. Astron. Astrophys. 390, 327–335 (2002). arXiv:astro-ph/0205225

    Article  ADS  Google Scholar 

  • A.M. Bykov, Faint hard X-ray sources in the galactic center region: supernova ejecta fragments population. Astron. Astrophys. 410, L5–L8 (2003). arXiv:astro-ph/0309234

    Article  ADS  Google Scholar 

  • A.M. Bykov, Shocks and particle acceleration in SNRs: theoretical aspects. Adv. Space Res. 33, 366–375 (2004)

    Article  ADS  Google Scholar 

  • A.M. Bykov, G.D. Fleishman, On non-thermal particle generation in superbubbles. Mon. Not. R. Astron. Soc. 255, 269–275 (1992)

    ADS  Google Scholar 

  • A.M. Bykov, I.N. Toptygin, A model of particle acceleration to high energies by multiple supernova explosions in OB associations. Astron. Lett. 27, 625–633 (2001)

    Article  ADS  Google Scholar 

  • A.M. Bykov, Y.A. Uvarov, Electron kinetics in collisionless shock waves. JETP Lett. 88, 465–475 (1999)

    Google Scholar 

  • A.M. Bykov, A.M. Krassilchtchikov, Y.A. Uvarov, H. Bloemen et al., Isolated X-ray-infrared sources in the region of interaction of the supernova remnant IC 443 with a molecular cloud. Astrophys. J. 676, 1050–1063 (2008a). arXiv:0801.1255

    Article  ADS  Google Scholar 

  • A.M. Bykov, Y.A. Uvarov, D.C. Ellison, Dots, clumps, and filaments: the intermittent images of synchrotron emission in random magnetic fields of young supernova remnants. Astrophys. J. Lett. 689, L133–L136 (2008b). arXiv:0811.2498

    Article  ADS  Google Scholar 

  • A.M. Bykov, Y.A. Uvarov, J.B.G.M. Bloemen, J.W. den Herder et al., A model of polarized X-ray emission from twinkling synchrotron supernova shells. Mon. Not. R. Astron. Soc. 399, 1119–1125 (2009). arXiv:0907.2521

    Article  ADS  Google Scholar 

  • A.M. Bykov, D.C. Ellison, S.M. Osipov, G.G. Pavlov et al., X-ray stripes in Tycho’s supernova remnant: synchrotron footprints of a nonlinear cosmic-ray-driven instability. Astrophys. J. Lett. 735, L40 (2011a). arXiv:1106.3441

    Article  ADS  Google Scholar 

  • A.M. Bykov, S.M. Osipov, D.C. Ellison, Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. Mon. Not. R. Astron. Soc. 410, 39–52 (2011b). arXiv:1010.0408

    Article  ADS  Google Scholar 

  • R. Capelli, R.S. Warwick, D. Porquet, S. Gillessen et al., Fe Kα line emission from the arches cluster region—evidence for ongoing particle bombardment? Astron. Astrophys. 530, A38 (2011). arXiv:1104.2039

    Article  ADS  Google Scholar 

  • D. Caprioli, E. Amato, P. Blasi, The contribution of supernova remnants to the galactic cosmic ray spectrum. Astropart. Phys. 33, 160–168 (2010). arXiv:0912.2964

    Article  ADS  Google Scholar 

  • A.K. Carlton, K.J. Borkowski, S.P. Reynolds, U. Hwang et al., Expansion of the youngest galactic supernova remnant G1.9+0.3 (2011). arXiv:1106.4498

  • G. Cassam-Chenaï, J.P. Hughes, J. Ballet, A. Decourchelle, The blast wave of Tycho’s supernova remnant. Astrophys. J. 665, 315–340 (2007). arXiv:astro-ph/0703239

    Article  ADS  Google Scholar 

  • G. Cassam-Chenaï, J.P. Hughes, E.M. Reynoso, C. Badenes et al., Morphological evidence for azimuthal variations of the cosmic-ray ion acceleration at the blast wave of SN 1006. Astrophys. J. 680, 1180–1197 (2008). arXiv:0803.0805

    Article  ADS  Google Scholar 

  • D. Castro, P. Slane, Fermi large area telescope observations of supernova remnants interacting with molecular clouds. Astrophys. J. 717, 372–378 (2010). arXiv:1002.2738

    Article  ADS  Google Scholar 

  • C. Ceccarelli, A. Bacmann, A. Boogert, E. Caux et al., Herschel spectral surveys of star-forming regions. Overview of the 555–636 GHz range. Astron. Astrophys. 521, L22 (2010)

    Article  ADS  Google Scholar 

  • C. Ceccarelli, P. Hily-Blant, T. Montmerle, G. Dubus et al., Supernova-enhanced cosmic-ray ionization and induced chemistry in a molecular cloud of W51C. Astrophys. J. Lett. 740, L4 (2011). arXiv:1108.3600

    Article  ADS  Google Scholar 

  • K.S. Cheng, D.O. Chernyshov, V.A. Dogiel, C.M. Ko et al., Origin of the Fermi bubble. Astrophys. J. Lett. 731, L17 (2011). arXiv:1103.1002

    Article  ADS  Google Scholar 

  • R.A. Chevalier, Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 258, 790–797 (1982a)

    Article  ADS  Google Scholar 

  • R.A. Chevalier, The radio and X-ray emission from type II supernovae. Astrophys. J. 259, 302–310 (1982b)

    Article  ADS  Google Scholar 

  • R.A. Chevalier, Blast waves with cosmic-ray pressure. Astrophys. J. 272, 765–772 (1983)

    Article  ADS  Google Scholar 

  • R.A. Chevalier, J. Oishi, Cassiopeia A and its clumpy presupernova wind. Astrophys. J. Lett. 593, L23–L26 (2003)

    Article  ADS  Google Scholar 

  • R.A. Chevalier, J.C. Raymond, Optical emission from a fast shock wave—the remnants of Tycho’s supernova and SN 1006. Astrophys. J. Lett. 225, L27–L30 (1978)

    Article  ADS  Google Scholar 

  • R.A. Chevalier, R.P. Kirshner, J.C. Raymond, The optical emission from a fast shock wave with application to supernova remnants. Astrophys. J. 235, 186–195 (1980)

    Article  ADS  Google Scholar 

  • D.P. Cox, R.L. Shelton, W. Maciejewski, R.K. Smith et al., Modeling W44 as a supernova remnant in a density gradient with a partially formed dense shell and thermal conduction in the hot interior. I. The analytical model. Astrophys. J. 524, 179–191 (1999)

    Article  ADS  Google Scholar 

  • R.M. Crocker, F. Aharonian, Fermi bubbles: giant, multibillion-year-old reservoirs of galactic center cosmic rays. Phys. Rev. Lett. 106(10), 101102 (2011). arXiv:1008.2658

    Article  ADS  Google Scholar 

  • R.M. Crocker, D.I. Jones, F. Melia, J. Ott et al., A lower limit of 50 microgauss for the magnetic field near the galactic centre. Nature 463, 65–67 (2010). arXiv:1001.1275

    Article  ADS  Google Scholar 

  • R.M. Crocker, D.I. Jones, F. Aharonian, C.J. Law et al., γ-rays and the far-infrared-radio continuum correlation reveal a powerful galactic centre wind. Mon. Not. R. Astron. Soc. 411, L11–L15 (2011). arXiv:1009.4340

    Article  ADS  Google Scholar 

  • CTA Consortium T, Design concepts for the Cherenkov telescope array (2010). arXiv:1008.3703

  • A. Dalgarno, Interstellar chemistry special feature: the galactic cosmic ray ionization rate. Proc. Natl. Acad. Sci. USA 1031, 12 269–12 273 (2006)

    Google Scholar 

  • A.P.L.S. de Laat, Balmer-dominated shocks and the effects of cosmic-ray acceleration. Master’s thesis, Utrecht University (2011)

  • A. Decourchelle, D.C. Ellison, J. Ballet, Thermal X-ray emission and cosmic-ray production in young supernova remnants. Astrophys. J. Lett. 543, L57–L60 (2000). arXiv:astro-ph/0008344

    Article  ADS  Google Scholar 

  • T. Delaney, L. Rudnick, The first measurement of Cassiopeia A’s forward shock expansion rate. Astrophys. J. 589, 818 (2003)

    Article  ADS  Google Scholar 

  • T. DeLaney, B. Koralesky, L. Rudnick, J.R. Dickel, Radio spectral index variations and physical conditions in Kepler’s supernova remnant. Astrophys. J. 580, 914–927 (2002). arXiv:astro-ph/0210355

    Article  ADS  Google Scholar 

  • T. DeLaney, L. Rudnick, R.A. Fesen, T.W. Jones et al., Kinematics of X-ray-emitting components in Cassiopeia A. Astrophys. J. 613, 343–348 (2004). arXiv:astro-ph/0406045

    Article  ADS  Google Scholar 

  • C.D. Dermer, Binary collision rates of relativistic thermal plasmas. II. Spectra. Astrophys. J. 307, 47–59 (1986)

    Article  ADS  Google Scholar 

  • J.R. Dickel, D.K. Milne, Magnetic fields in supernova remnants. Aust. J. Phys. 29, 435–460 (1976)

    Article  ADS  Google Scholar 

  • V. Dogiel, K.S. Cheng, D. Chernyshov, A. Bamba et al., Origin of 6.4 keV line emission from molecular clouds in the galactic center. Publ. Astron. Soc. Jpn. 61, 901 (2009)

    ADS  Google Scholar 

  • B.T. Draine, C.F. McKee, Theory of interstellar shocks. Annu. Rev. Astron. Astrophys. 31, 373–432 (1993)

    Article  ADS  Google Scholar 

  • L.O. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46, 973–1027 (1983)

    Article  ADS  Google Scholar 

  • L.O. Drury, Escaping the accelerator: how, when and in what numbers do cosmic rays get out of supernova remnants? Mon. Not. R. Astron. Soc. 415, 1807–1814 (2011). arXiv:1009.4799

    Article  ADS  Google Scholar 

  • L.O. Drury, J.H. Voelk, Hydromagnetic shock structure in the presence of cosmic rays. Astrophys. J. 248, 344–351 (1981)

    Article  ADS  Google Scholar 

  • L.O. Drury, P. Duffy, J.G. Kirk, Limits on diffusive shock acceleration in dense and incompletely ionised media. Astron. Astrophys. 309, 1002–1010 (1996). arXiv:astro-ph/9510066

    ADS  Google Scholar 

  • L. Drury, F.A. Aharonian, D. Malyshev, S. Gabici, On the plasma temperature in supernova remnants with cosmic-ray modified shocks. Astron. Astrophys. 496, 1–6 (2009). arXiv:0811.3566

    Article  ADS  MATH  Google Scholar 

  • G. Dubner, E. Giacani, E. Reynoso, S. Parón, The molecular clouds in the environs of the supernova remnants G349.7+0.2 and G18.8+0.3. Astron. Astrophys. 426, 201–212 (2004)

    Article  ADS  Google Scholar 

  • V.V. Dwarkadas, R.A. Chevalier, Interaction of type IA supernovae with their surroundings. Astrophys. J. 497, 807–823 (1998)

    Article  ADS  Google Scholar 

  • D. Eichler, V. Usov, Particle acceleration and nonthermal radio emission in binaries of early-type stars. Astrophys. J. 402, 271–279 (1993)

    Article  ADS  Google Scholar 

  • D.C. Ellison, A. Decourchelle, J. Ballet, Hydrodynamic simulation of supernova remnants including efficient particle acceleration. Astron. Astrophys. 413, 189–201 (2004). arXiv:astro-ph/0308308

    Article  ADS  Google Scholar 

  • D.C. Ellison, A. Decourchelle, J. Ballet, Nonlinear particle acceleration at reverse shocks in supernova remnants. Astron. Astrophys. 429, 569–580 (2005). arXiv:astro-ph/0409182

    Article  ADS  Google Scholar 

  • D.C. Ellison, D.J. Patnaude, P. Slane, J. Raymond, Efficient cosmic ray acceleration, hydrodynamics, and self-consistent thermal X-ray emission applied to supernova remnant RX J1713.7-3946. Astrophys. J. 712, 287–293 (2010). arXiv:1001.1932

    Article  ADS  Google Scholar 

  • K.A. Eriksen, J.P. Hughes, C. Badenes, R. Fesen et al., Evidence for particle acceleration to the knee of the cosmic ray spectrum in Tycho’s supernova remnant. Astrophys. J. Lett. 728, L28 (2011). arXiv:1101.1454

    Article  ADS  Google Scholar 

  • J.A. Esposito, S.D. Hunter, G. Kanbach, P. Sreekumar, EGRET observations of radio-bright supernova remnants. Astrophys. J. 461, 820 (1996)

    Article  ADS  Google Scholar 

  • F. Favata et al., The broad-band X-ray spectrum of the Cas A supernova remnant as seen by the BeppoSAX observatory. Astron. Astrophys. 324, L49–L52 (1997)

    ADS  Google Scholar 

  • G. Ferrand, A. Marcowith, On the shape of the spectrum of cosmic rays accelerated inside superbubbles. Astron. Astrophys. 510, A101 (2010). arXiv:0911.4457

    Article  ADS  Google Scholar 

  • K. Ferrière, Interstellar magnetic fields in the galactic center region. Astron. Astrophys. 505, 1183–1198 (2009). arXiv:0908.2037

    Article  ADS  MATH  Google Scholar 

  • R.A. Fesen, M.C. Hammell, J. Morse, R.A. Chevalier et al., The expansion asymmetry and age of the Cassiopeia A supernova remnant. Astrophys. J. 645, 283–292 (2006). arXiv:astro-ph/0603371

    Article  ADS  Google Scholar 

  • A. Fiasson, K. Kosack, J. Skilton, Y. Gallant et al., Probing cosmic ray acceleration through molecular clouds in the vicinity of supernova remnant with H.E.S.S. Am. Ins. Phys. Conf. Ser. 1085, 361–363 (2008)

    ADS  Google Scholar 

  • G.B. Field, D.W. Goldsmith, H.J. Habing, Cosmic-ray heating of the interstellar gas. Astrophys. J. Lett. 155, L149 (1969)

    Article  ADS  Google Scholar 

  • A.V. Filippenko, Supernova 1987 K—type II in youth, type Ib in old age. Astron. J. 96, 1941–1948 (1988)

    Article  ADS  Google Scholar 

  • A.V. Filippenko, Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997)

    Article  ADS  Google Scholar 

  • D.A. Frail, W.M. Goss, E.M. Reynoso, E.B. Giacani et al., A survey for OH (1720 MHz) maser emission toward supernova remnants. Astron. J. 111, 1651–1659 (1996)

    Article  ADS  Google Scholar 

  • C. Fransson, C.I. Björnsson, Radio emission and particle acceleration in SN 1993J. Astrophys. J. 509, 861–878 (1998). arXiv:astro-ph/9807030

    Article  ADS  Google Scholar 

  • Y. Fukui, Y. Moriguchi, K. Tamura, H. Yamamoto et al., Discovery of interacting molecular gas toward the TeV gamma-ray peak of the SNR G 347.3–0.5. Publ. Astron. Soc. Jpn. 55, L61–L64 (2003)

    ADS  Google Scholar 

  • A. Furuzawa, D. Ueno, A. Hayato, M. Ozawa et al., Doppler-broadened iron X-ray lines from Tycho’s supernova remnant. Astrophys. J. Lett. 693, L61–L65 (2009). arXiv:0902.3049

    Article  ADS  Google Scholar 

  • S. Gabici, F.A. Aharonian, S. Casanova, Broad-band non-thermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants. Mon. Not. R. Astron. Soc. 396, 1629–1639 (2009). arXiv:0901.4549

    Article  ADS  Google Scholar 

  • R. Genzel, F. Eisenhauer, S. Gillessen, The galactic center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010). arXiv:1006.0064

    Article  ADS  Google Scholar 

  • M. Gerin, M. de Luca, J.R. Goicoechea, E. Herbst et al., Interstellar CH absorption in the diffuse interstellar medium along the sight-lines to G10.6-0.4 (W31C), W49N, and W51. Astron. Astrophys. 521, L16 (2010)

    Article  ADS  Google Scholar 

  • P. Ghavamian, J.M. Laming, C.E. Rakowski, A physical relationship between electron-proton temperature equilibration and Mach number in fast collisionless shocks. Astrophys. J. Lett. 654, L69–L72 (2007). arXiv:astro-ph/0611306

    Article  ADS  Google Scholar 

  • V.L. Ginzburg, S.I. Syrovatskii, Cosmic Magnetobremsstrahlung (synchrotron radiation). Annu. Rev. Astron. Astrophys. 3, 297 (1965)

    Article  ADS  Google Scholar 

  • V.L. Ginzburg, S.I. Syrovatskij, Cosmic rays in the galaxy (introductory report), in Radio Astronomy and the Galactic System, ed. by H. van Woerden. IAU Symposium, vol. 31 (1967), p. 411

    Google Scholar 

  • F. Giordano, M. Naumann-Godo, J. Ballet, K. Bechtol et al., Fermi-LAT detection of the young supernova remnant Tycho (2011). arXiv:1108.0265

  • A. Giuliani, M. Tavani, A. Bulgarelli, E. Striani et al., AGILE detection of GeV γ-ray emission from the SNR W28. Astron. Astrophys. 516, L11 (2010). arXiv:1005.0784

    Article  ADS  Google Scholar 

  • A. Giuliani, M. Cardillo, M. Tavani, Y. Fukui et al., Neutral pion emission from accelerated protons in the supernova remnant W44. Astrophys. J. Lett. 742, L30 (2011)

    Article  ADS  Google Scholar 

  • G. Gloeckler, J. Geiss, H. Balsiger, L.A. Fisk et al., Detection of interstellar pick-up hydrogen in the solar system. Science 261, 70–73 (1993)

    Article  ADS  Google Scholar 

  • E.V. Gotthelf, B. Koralesky, L. Rudnick, T.W. Jones et al., Chandra detection of the forward and reverse shocks in Cassiopeia A. Astrophys. J. Lett. 552, L39–L43 (2001). arXiv:astro-ph/0104161

    Article  ADS  Google Scholar 

  • D.A. Green, A catalogue of galactic supernova remnants (Green, 2009). VizieR Online Data Catalog 7253 (2009)

  • S.F. Gull, A numerical model of the structure and evolution of young supernova remnants. Mon. Not. R. Astron. Soc. 161, 47–69 (1973)

    ADS  Google Scholar 

  • A.J.S. Hamilton, C.L. Sarazin, A.E. Szymkowiak, The X-ray spectrum of SN 1006. Astrophys. J. 300, 698–712 (1986)

    Article  ADS  Google Scholar 

  • C. Heiles, Clustered supernovae versus the gaseous disk and halo. Astrophys. J. 354, 483–491 (1990)

    Article  ADS  Google Scholar 

  • E.A. Helder, J. Vink, Characterizing the nonthermal emission of Cassiopeia A. Astrophys. J. 686, 1094–1102 (2008)

    Article  ADS  Google Scholar 

  • E.A. Helder, J. Vink, C.G. Bassa, A. Bamba et al., Measuring the cosmic-ray acceleration efficiency of a supernova remnant. Science 325, 719 (2009). arXiv:0906.4553

    Article  ADS  Google Scholar 

  • E.A. Helder, D. Kosenko, J. Vink, Cosmic-ray acceleration efficiency versus temperature equilibration: the case of SNR 0509-67.5. Astrophys. J. Lett. 719, L140–L144 (2010). arXiv:1007.3138

    Article  ADS  Google Scholar 

  • E.A. Helder, J. Vink, C.G. Bassa, Temperature equilibration behind the shock front: an optical and X-ray study of RCW 86. Astrophys. J. 737, 85 (2011). arXiv:1106.0303

    Article  ADS  Google Scholar 

  • J.F. Helmboldt, N.E. Kassim, The evolution of Cassiopeia A at low radio frequencies. Astron. J. 138, 838–844 (2009). arXiv:0903.5010

    Article  ADS  Google Scholar 

  • K. Heng, Balmer-dominated shocks: a concise review. Publ. Astron. Soc. Aust. 27, 23–44 (2010). arXiv:0908.4080

    Article  ADS  Google Scholar 

  • K. Heng, R. McCray, Balmer-dominated shocks revisited. Astrophys. J. 654, 923–937 (2007). arXiv:astro-ph/0609331

    Article  ADS  Google Scholar 

  • K. Heng, M. van Adelsberg, R. McCray, J.C. Raymond, The transition zone in Balmer-dominated shocks. Astrophys. J. 668, 275–284 (2007). arXiv:0705.2619

    Article  ADS  Google Scholar 

  • E. Herbst, W. Klemperer, The formation and depletion of molecules in dense interstellar clouds. Astrophys. J. 185, 505–534 (1973)

    Article  ADS  Google Scholar 

  • V.F. Hess, Über die Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Z. Phys. 13, 1084 (1912)

    Google Scholar 

  • J.J. Hester, J.C. Raymond, W.P. Blair, The Balmer-dominated northeast limb of the Cygnus loop supernova remnant. Astrophys. J. 420, 721–745 (1994)

    Article  ADS  Google Scholar 

  • J.W. Hewitt, F. Yusef-Zadeh, M. Wardle, D.A. Roberts et al., Green bank telescope observations of IC 443: the nature of OH (1720 MHz) masers and OH absorption. Astrophys. J. 652, 1288–1296 (2006). arXiv:astro-ph/0602210

    Article  ADS  Google Scholar 

  • J.W. Hewitt, F. Yusef-Zadeh, M. Wardle, Correlation of supernova remnant masers and Gamma-ray sources. Astrophys. J. Lett. 706, L270–L274 (2009). arXiv:0909.2827

    Article  ADS  Google Scholar 

  • J.C. Higdon, R.E. Lingenfelter, OB associations, supernova-generated superbubbles, and the source of cosmic rays. Astrophys. J. 628, 738–749 (2005)

    Article  ADS  Google Scholar 

  • A.M. Hillas, Topical review: can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J. Phys. G, Nucl. Part. Phys. 31, 95 (2005)

    Article  ADS  Google Scholar 

  • W. Hillebrandt, J.C. Niemeyer, Type IA supernova explosion models. Annu. Rev. Astron. Astrophys. 38, 191–230 (2000). arXiv:astro-ph/0006305

    Article  ADS  Google Scholar 

  • J.A. Hinton, W. Hofmann, Teraelectronvolt astronomy. Annu. Rev. Astron. Astrophys. 47, 523–565 (2009)

    Article  ADS  Google Scholar 

  • J.S. Hiraga, Y. Uchiyama, T. Takahashi, F.A. Aharonian, Spectral properties of nonthermal X-ray emission from the shell-type SNR RX J1713.7 3946 as revealed by XMM-Newton. Astron. Astrophys. 431, 953–961 (2005). arXiv:astro-ph/0407401

    Article  ADS  Google Scholar 

  • I.M. Hoffman, W.M. Goss, C.L. Brogan, M.J. Claussen, The OH (1720 MHz) supernova remnant masers in W44: MERLIN and VLBA polarization observations. Astrophys. J. 627, 803–812 (2005). arXiv:astro-ph/0503481

    Article  ADS  Google Scholar 

  • P. Hofverberg, R.C.G. Chaves, A. Fiasson, K. Kosack et al., Discovery of VHE gamma-rays from the vicinity of the shell-type SNR G318.2+0.1 with H.E.S.S (2011a). arXiv:1104.5119

  • P. Hofverberg, R.C.G. Chaves, J. Méhault, M. de Naurois et al., Discovery of VHE gamma-ray emission from the SNR G15.4+0.1 with H.E.S.S (2011b). arXiv:1112.2901

  • J.A. Högbom, J.R. Shakeshaft, Secular variation of the flux density of the radio source Cassiopeia A. Nature 189, 561–562 (1961)

    Article  ADS  Google Scholar 

  • L. Hovey, J.P. Hughes, Astrophys. J. (2012, in prep.)

  • F. Hoyle, W.A. Fowler, Nucleosynthesis in supernovae. Astrophys. J. 132, 565 (1960)

    Article  ADS  Google Scholar 

  • J.P. Hughes, C.E. Rakowski, A. Decourchelle, Electron heating and cosmic rays at a supernova shock from Chandra X-ray observations of 1E 0102.2-7219. Astrophys. J. Lett. 543, L61–L65 (2000). arXiv:astro-ph/0007032

    Article  ADS  Google Scholar 

  • U. Hwang, R. Petre, S.S. Holt, A.E. Szymkowiak, The thermal X-ray-emitting shell of large Magellanic cloud supernova remnant 0540-69.3. Astrophys. J. 560, 742–748 (2001). arXiv:astro-ph/0106415

    Article  ADS  Google Scholar 

  • N. Indriolo, G.A. Blake, M. Goto, T. Usuda et al., Investigating the cosmic-ray ionization rate near the supernova remnant IC 443 through \(\mathrm{H}^{+}_{3}\) observations. Astrophys. J. 724, 1357–1365 (2010). arXiv:1010.3252

    Article  ADS  Google Scholar 

  • T. Inoue, R. Yamazaki, S. Inutsuka, Two-step acceleration model of cosmic rays at middle-aged supernova remnants: universality in secondary shocks. Astrophys. J. Lett. 723, L108–L112 (2010). arXiv:1010.0706

    Article  ADS  Google Scholar 

  • T. Inui, K. Koyama, H. Matsumoto, T.G. Tsuru, Time variability of the neutral iron lines from the Sagittarius B2 region and its implication of a past outburst of Sagittarius A. Publ. Astron. Soc. Jpn. 61, 241 (2009)

    ADS  Google Scholar 

  • P.A. Isenberg, Interstellar pickup ions: not just theory anymore. Rev. Geophys. 33, 623–628 (1995)

    Article  ADS  Google Scholar 

  • J.R. Jokipii, Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys. J. 313, 842–846 (1987)

    Article  ADS  Google Scholar 

  • T.J. Jones, L. Rudnick, T. DeLaney, J. Bowden, The identification of infrared synchrotron radiation from Cassiopeia A. Astrophys. J. 587, 227 (2003)

    Article  ADS  Google Scholar 

  • B.I. Jun, M.L. Norman, On the origin of radial magnetic fields in young supernova remnants. Astrophys. J. 472, 245 (1996). arXiv:astro-ph/9606096

    Article  ADS  Google Scholar 

  • T. Kamae, N. Karlsson, T. Mizuno, T. Abe et al., Parameterization of γ, e+/−, and neutrino spectra produced by p-p interaction in astronomical environments. Astrophys. J. 647, 692–708 (2006). arXiv:astro-ph/0605581

    Article  ADS  Google Scholar 

  • H. Katagiri, L. Tibaldo, J. Ballet, F. Giordano et al., Fermi large area telescope observations of the Cygnus loop supernova remnant. Astrophys. J. 741, 44 (2011). arXiv:1108.1833

    Article  ADS  Google Scholar 

  • S. Katsuda, H. Tsunemi, K. Mori, The slow X-ray expansion of the northwestern rim of the supernova remnant RX J0852.0-4622. Astrophys. J. Lett. 678, L35–L38 (2008). arXiv:0803.3266

    Article  ADS  Google Scholar 

  • S. Katsuda, R. Petre, J.P. Hughes, U. Hwang et al., X-ray measured dynamics of Tycho’s supernova remnant. Astrophys. J. 709, 1387–1395 (2010a). arXiv:1001.2484

    Article  ADS  Google Scholar 

  • S. Katsuda, R. Petre, K. Mori, S.P. Reynolds et al., Steady X-ray synchrotron emission in the northeastern limb of SN 1006. Astrophys. J. 723, 383–392 (2010b). arXiv:1009.0280

    Article  ADS  Google Scholar 

  • J. Katsuta, Y. Uchiyama, T. Tanaka, H. Tajima et al., Fermi-LAT observation of supernova remnant S147 (2012). arXiv:1204.4703

  • B. Katz, E. Waxman, In which shell-type SNRs should we look for gamma-rays and neutrinos from P-P collisions? J. Cosmol. Astropart. Phys. 1, 18 (2008). arXiv:0706.3485

    Article  ADS  Google Scholar 

  • S.R. Kelner, F.A. Aharonian, V.V. Bugayov, Energy spectra of gamma rays, electrons, and neutrinos produced at proton-proton interactions in the very high energy regime. Phys. Rev. D 74(3), 034018 (2006). arXiv:astro-ph/0606058

    Article  ADS  Google Scholar 

  • J.W. Keohane, W.T. Reach, J. Rho, T.H. Jarrett, A near-infrared and X-ray study of W49 B: a wind cavity explosion. Astrophys. J. 654, 938–944 (2007). arXiv:astro-ph/0609533

    Article  ADS  Google Scholar 

  • R.P. Kirshner, R.A. Chevalier, Spectra of Cassiopeia A. I. Observations. Astrophys. J. 218, 142–147 (1977)

    Article  ADS  Google Scholar 

  • R.P. Kirshner, R.A. Chevalier, The spectrum of Tycho’s supernova remnant. Astron. Astrophys. 67, 267–271 (1978)

    ADS  Google Scholar 

  • E.G. Klepach, V.S. Ptuskin, V.N. Zirakashvili, Cosmic ray acceleration by multiple spherical shocks. Astropart. Phys. 13, 161–172 (2000)

    Article  ADS  Google Scholar 

  • J. Knödlseder, Cygnus OB2—a young globular cluster in the Milky Way. Astron. Astrophys. 360, 539–548 (2000). arXiv:astro-ph/0007442

    ADS  Google Scholar 

  • D. Kosenko, J. Vink, S. Blinnikov, A. Rasmussen, XMM-Newton X-ray spectra of the SNR 0509-67.5: data and models. Astron. Astrophys. 490, 223–230 (2008). arXiv:0807.0579

    Article  ADS  Google Scholar 

  • D. Kosenko, E.A. Helder, J. Vink, The kinematics and chemical stratification of the type Ia supernova remnant 0519-69.0. An XMM-Newton and Chandra study. Astron. Astrophys. 519, A11 (2010). arXiv:1001.0983

    Article  ADS  Google Scholar 

  • D. Kosenko, S.I. Blinnikov, J. Vink, Modeling supernova remnants: effects of diffusive cosmic-ray acceleration on the evolution and application to observations. Astron. Astrophys. 532, A114 (2011). arXiv:1105.5966

    Article  ADS  Google Scholar 

  • K. Koyama, R. Petre, E.V. Gotthelf, U. Hwang et al., Evidence for shock acceleration of high-energy electrons in the supernova remnant SN:1006. Nature 378, 255 (1995)

    Article  ADS  Google Scholar 

  • K. Koyama, Y. Maeda, T. Sonobe, T. Takeshima et al., ASCA view of our galactic center: remains of past activities in X-rays? Publ. Astron. Soc. Jpn. 48, 249–255 (1996)

    ADS  Google Scholar 

  • K. Koyama, K. Kinugasa, K. Matsuzaki, M. Nishiuchi et al., Discovery of non-thermal X-rays from the northwest shell of the new SNR RX J1713.7-3946. Publ. Astron. Soc. Jpn. 49, L7–L11 (1997)

    ADS  Google Scholar 

  • K. Koyama, Y. Hyodo, T. Inui, H. Nakajima et al., Iron and nickel line diagnostics for the galactic center diffuse emission. Publ. Astron. Soc. Jpn. 59, 245–255 (2007). arXiv:astro-ph/0609215

    ADS  Google Scholar 

  • O. Krause, S.M. Birkmann, T. Usuda, T. Hattori et al., The Cassiopeia A supernova was of type IIb. Science 320, 1195 (2008). arXiv:0805.4557

    Article  ADS  Google Scholar 

  • G.F. Krymskii, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Dokl. Akad. Nauk SSSR 234, 1306–1308 (1977)

    ADS  Google Scholar 

  • H. Laffon, B. Khélifi, F. Brun, F. Acero et al., Evidence for VHE emission from SNR G22.7-0.2 region with H.E.S.S (2011). arXiv:1110.6890

  • P.O. Lagage, C.J. Cesarsky, The maximum energy of cosmic rays accelerated by supernova shocks. Astron. Astrophys. 125, 249–257 (1983)

    ADS  MATH  Google Scholar 

  • J.M. Laming, Accelerated electrons in Cassiopeia A: an explanation for the hard X-ray tail. Astrophys. J. 546, 1149–1158 (2001)

    Article  ADS  Google Scholar 

  • J.M. Laming, U. Hwang, On the determination of ejecta structure and explosion asymmetry from the X-ray knots of Cassiopeia A. Astrophys. J. 597, 347–361 (2003). arXiv:astro-ph/0306119

    Article  ADS  Google Scholar 

  • T.N. LaRosa, C.L. Brogan, S.N. Shore, T.J. Lazio et al., Evidence of a weak galactic center magnetic field from diffuse low-frequency nonthermal radio emission. Astrophys. J. Lett. 626, L23–L27 (2005). arXiv:astro-ph/0505244

    Article  ADS  Google Scholar 

  • J.J. Lee, B.C. Kao, J. Raymond, P. Ghavamian et al., Subaru HDS observations of a Balmer-dominated shock in Tycho’s supernova remnant. Astrophys. J. Lett. 659, L133–L136 (2007)

    Article  ADS  Google Scholar 

  • J. Lee, J.C. Raymond, S. Park, W.P. Blair et al., Resolved shock structure of the Balmer-dominated filaments in Tycho’s supernova remnant: cosmic-ray precursor? Astrophys. J. Lett. 715, L146–L149 (2010). arXiv:1005.3296

    Article  ADS  Google Scholar 

  • H. Li, Y. Chen, Gamma-rays from molecular clouds illuminated by accumulated diffusive protons. II. Interacting supernova remnants (2011). arXiv:1108.4541

  • W. Li, J. Leaman, R. Chornock, A.V. Filippenko et al., Nearby supernova rates from the lick observatory supernova search. II. The observed luminosity functions and fractions of supernovae in a complete sample. Mon. Not. R. Astron. Soc. 412, 1441–1472 (2011). arXiv:1006.4612

    Article  ADS  Google Scholar 

  • A.J. Lim, A.C. Raga, A distribution function calculation of the Hα profiles of high-velocity shocks. II. The broad component neutral precursor. Mon. Not. R. Astron. Soc. 280, 103–114 (1996)

    ADS  Google Scholar 

  • S.G. Lucek, A.R. Bell, Non-linear amplification of a magnetic field driven by cosmic ray streaming. Mon. Not. R. Astron. Soc. 314, 65–74 (2000)

    Article  ADS  Google Scholar 

  • L.A. Maddox, R.M. Williams, B.C. Dunne, Y.H. Chu, Nonthermal X-ray emission in the N11 superbubble in the large Magellanic cloud. Astrophys. J. 699, 911–916 (2009). arXiv:0904.1821

    Article  ADS  Google Scholar 

  • M.A. Malkov, Analytic solution for nonlinear shock acceleration in the Bohm limit. Astrophys. J. 485, 638 (1997). arXiv:astro-ph/9707152

    Article  ADS  Google Scholar 

  • M.A. Malkov, Asymptotic particle spectra and plasma flows at strong shocks. Astrophys. J. Lett. 511, L53–L56 (1999). arXiv:astro-ph/9807097

    Article  ADS  Google Scholar 

  • M.A. Malkov, L. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001)

    Article  ADS  Google Scholar 

  • M.A. Malkov, P.H. Diamond, R.Z. Sagdeev, Mechanism for spectral break in cosmic ray proton spectrum of supernova remnant W44. Nature Communications 2 (2011). arXiv:1004.4714

  • J.M. Marcaide, I. Martí-Vidal, A. Alberdi, M.A. Pérez-Torres et al., A decade of SN 1993J: discovery of radio wavelength effects in the expansion rate. Astron. Astrophys. 505, 927–945 (2009). arXiv:0903.3833

    Article  ADS  Google Scholar 

  • A. Marcowith, M. Lemoine, G. Pelletier, Turbulence and particle acceleration in collisionless supernovae remnant shocks. II. Cosmic-ray transport. Astron. Astrophys. 453, 193–202 (2006). arXiv:astro-ph/0603462

    Article  ADS  MATH  Google Scholar 

  • I. Martí-Vidal, M.A. Pérez-Torres, A. Brunthaler, Electron cooling and the connection between expansion and flux-density evolution in radio supernovae. Astron. Astrophys. 529, A47 (2011). arXiv:1101.5380

    Article  ADS  Google Scholar 

  • C.F. McKee, J.P. Ostriker, A theory of the interstellar medium—three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 218, 148–169 (1977)

    Article  ADS  Google Scholar 

  • J.F. McKenzie, H.J. Völk, Non-linear theory of cosmic ray shocks including self-generated Alfven waves. Astron. Astrophys. 116, 191–200 (1982)

    ADS  MATH  Google Scholar 

  • J. Méhault, A.C. Clapson, M. Fuessling, A. Abramowski et al., Unveiling the origin of gamma-ray emission towards the W41 region with H.E.S.S. data, in 38th COSPAR Scientific Assembly, vol. 38 (2010), p. 2801

    Google Scholar 

  • F. Melia, M. Fatuzzo, Diffusive cosmic-ray acceleration at the galactic centre. Mon. Not. R. Astron. Soc. 410, L23–L27 (2011). arXiv:1010.2949

    Article  ADS  Google Scholar 

  • M. Miceli, F. Bocchino, D. Iakubovskyi, S. Orlando et al., Thermal emission, shock modification, and X-ray emitting ejecta in SN 1006. Astron. Astrophys. 501, 239–249 (2009). arXiv:0903.3392

    Article  ADS  Google Scholar 

  • D.K. Milne, An atlas of supernova remnant magnetic fields. Aust. J. Phys. 40, 771–787 (1987)

    ADS  Google Scholar 

  • R. Minkowski, Spectra of supernovae. Publ. Astron. Soc. Pac. 53, 224 (1941)

    Article  ADS  Google Scholar 

  • R. Minkowski, Optical investigations of radio sources (introductory lecture), in Radio Astronomy, ed. by H.C. van de Hulst. IAU Symposium, vol. 4, (1957), p. 107

    Google Scholar 

  • E. Miyata, H. Tsunemi, B. Aschenbach, K. Mori, Chandra X-ray observatory study of Vela Shrapnel A. Astrophys. J. Lett. 559, L45–L48 (2001)

    Article  ADS  Google Scholar 

  • E. Moebius, D. Hovestadt, B. Klecker, M. Scholer et al., Direct observation of He(+) pick-up ions of interstellar origin in the solar wind. Nature 318, 426–429 (1985)

    Article  ADS  Google Scholar 

  • G. Morlino, D. Caprioli, Strong evidences of hadron acceleration in Tycho’s supernova remnant (2011). arXiv:1105.6342

  • M. Morris, E. Serabyn, The galactic center environment. Annu. Rev. Astron. Astrophys. 34, 645–702 (1996)

    Article  ADS  Google Scholar 

  • M.P. Muno, F.K. Baganoff, W.N. Brandt, S. Park et al., Discovery of variable iron fluorescence from reflection nebulae in the galactic center. Astrophys. J. Lett. 656, L69–L72 (2007). arXiv:astro-ph/0611651

    Article  ADS  Google Scholar 

  • C.Y. Ng, B.M. Gaensler, L. Staveley-Smith, R.N. Manchester et al., Fourier modeling of the radio torus surrounding SN 1987A. Astrophys. J. 684, 481–497 (2008). arXiv:0805.4195

    Article  ADS  Google Scholar 

  • J. Niemiec, M. Pohl, T. Stroman, K.I. Nishikawa, Production of magnetic turbulence by cosmic rays drifting upstream of supernova remnant shocks. Astrophys. J. 684, 1174–1189 (2008). arXiv:0802.2185

    Article  ADS  Google Scholar 

  • C.A. Norman, S. Ikeuchi, The disk-halo interaction—superbubbles and the structure of the interstellar medium. Astrophys. J. 345, 372–383 (1989)

    Article  ADS  Google Scholar 

  • Y. Ohira, F. Takahara, Effects of neutral particles on modified shocks at supernova remnants. Astrophys. J. Lett. 721, L43–L47 (2010). arXiv:0912.2859

    Article  ADS  Google Scholar 

  • Y. Ohira, B. Reville, J.G. Kirk, F. Takahara, Two-dimensional particle-in-cell simulations of the nonresonant, cosmic-ray-driven instability in supernova remnant shocks. Astrophys. J. 698, 445–450 (2009a). arXiv:0812.0901

    Article  ADS  Google Scholar 

  • Y. Ohira, T. Terasawa, F. Takahara, Plasma instabilities as a result of charge exchange in the downstream region of supernova remnant shocks. Astrophys. J. Lett. 703, L59–L62 (2009b). arXiv:0908.3369

    Article  ADS  Google Scholar 

  • Y. Ohira, K. Murase, R. Yamazaki, Escape-limited model of cosmic-ray acceleration revisited. Astron. Astrophys. 513, A17 (2010). arXiv:0910.3449

    Article  ADS  Google Scholar 

  • Y. Ohira, K. Murase, R. Yamazaki, Gamma-rays from molecular clouds illuminated by cosmic rays escaping from interacting supernova remnants. Mon. Not. R. Astron. Soc. 410, 1577–1582 (2011a). arXiv:1007.4869

    ADS  Google Scholar 

  • Y. Ohira, R. Yamazaki, N. Kawanaka, K. Ioka, Escape of cosmic-ray electrons from supernova remnants (2011b). arXiv:1106.1810

  • T. Oka, T.R. Geballe, M. Goto, T. Usuda et al., Hot and diffuse clouds near the galactic center probed by metastable \(\mathrm{H}^{+}_{3}1\). Astrophys. J. 632, 882–893 (2005). arXiv:astro-ph/0507463

    Article  ADS  Google Scholar 

  • J.H. Oort, Problems in Cosmical Aerodynamics (Central Air Documents Office, Dayton, 1951)

    Google Scholar 

  • S. Orlando, F. Bocchino, M. Miceli, O. Petruk et al., Role of ejecta clumping and back-reaction of accelerated cosmic rays in the evolution of type Ia supernova remnants. Astrophys. J. 749, 156 (2012). arXiv:1202.3593

    Article  ADS  Google Scholar 

  • J.P. Ostriker, C.F. McKee, Astrophysical blastwaves. Rev. Mod. Phys. 60, 1–68 (1988)

    Article  ADS  Google Scholar 

  • M. Padovani, D. Galli, Effects of magnetic fields on the cosmic-ray ionization of molecular cloud cores. Astron. Astrophys. 530, A109 (2011). arXiv:1104.5445

    Article  ADS  Google Scholar 

  • M. Padovani, D. Galli, A.E. Glassgold, Cosmic-ray ionization of molecular clouds. Astron. Astrophys. 501, 619–631 (2009). arXiv:0904.4149

    Article  ADS  Google Scholar 

  • E. Parizot, A. Marcowith, E. van der Swaluw, A.M. Bykov et al., Superbubbles and energetic particles in the galaxy. I. Collective effects of particle acceleration. Astron. Astrophys. 424, 747–760 (2004). arXiv:astro-ph/0405531

    Article  ADS  Google Scholar 

  • E. Parizot, A. Marcowith, J. Ballet, Y.A. Gallant, Observational constraints on energetic particle diffusion in young supernovae remnants: amplified magnetic field and maximum energy. Astron. Astrophys. 453, 387–395 (2006). arXiv:astro-ph/0603723

    Article  ADS  Google Scholar 

  • S. Park, J.P. Hughes, P.O. Slane, K. Mori et al., A deep Chandra observation of the oxygen-rich supernova remnant 0540-69.3 in the large Magellanic cloud. Astrophys. J. 710, 948–957 (2010). arXiv:0912.5177

    Article  ADS  Google Scholar 

  • D.J. Patnaude, R.A. Fesen, Small-scale X-ray variability in the Cassiopeia A supernova remnant. Astron. J. 133, 147–153 (2007). arXiv:astro-ph/0609412

    Article  ADS  Google Scholar 

  • D.J. Patnaude, R.A. Fesen, Proper motions and brightness variations of nonthermal X-ray filaments in the Cassiopeia A supernova remnant. Astrophys. J. 697, 535–543 (2009). arXiv:0808.0692

    Article  ADS  Google Scholar 

  • D.J. Patnaude, D.C. Ellison, P. Slane, The role of diffusive shock acceleration on nonequilibrium ionization in supernova remnants. Astrophys. J. 696, 1956–1963 (2009). arXiv:0902.2481

    Article  ADS  Google Scholar 

  • D.J. Patnaude, J. Vink, J.M. Laming, R.A. Fesen, A decline in the nonthermal X-ray emission from Cassiopeia A. Astrophys. J. Lett. 729, L28 (2011). arXiv:1012.0243

    Article  ADS  Google Scholar 

  • T. Paumard, R. Genzel, F. Martins, S. Nayakshin et al., The two young star disks in the central parsec of the galaxy: properties, dynamics, and formation. Astrophys. J. 643, 1011–1035 (2006). arXiv:astro-ph/0601268

    Article  ADS  Google Scholar 

  • O. Petruk, On the transition of the adiabatic supernova remnant to the radiative stage in a nonuniform interstellar medium. J. Phys. Stud. 9, 364–373 (2005)

    Google Scholar 

  • M. Pohl, H. Yan, A. Lazarian, Magnetically limited X-ray filaments in young supernova remnants. Astrophys. J. Lett. 626, L101–L104 (2005)

    Article  ADS  Google Scholar 

  • G. Ponti, R. Terrier, A. Goldwurm, G. Belanger et al., Discovery of a superluminal Fe K echo at the galactic center: the glorious past of Sgr A* preserved by molecular clouds. Astrophys. J. 714, 732–747 (2010). arXiv:1003.2001

    Article  ADS  Google Scholar 

  • D. Porquet, N. Grosso, P. Predehl, G. Hasinger et al., X-ray hiccups from Sagittarius A* observed by XMM-Newton. The second brightest flare and three moderate flares caught in half a day. Astron. Astrophys. 488, 549–557 (2008). arXiv:0806.4088

    Article  ADS  Google Scholar 

  • S.F. Portegies Zwart, S.L.W. McMillan, M. Gieles, Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010). arXiv:1002.1961

    Article  ADS  Google Scholar 

  • V.S. Ptuskin, V.N. Zirakashvili, On the spectrum of high-energy cosmic rays produced by supernova remnants in the presence of strong cosmic-ray streaming instability and wave dissipation. Astron. Astrophys. 429, 755–765 (2005). arXiv:astro-ph/0408025

    Article  ADS  Google Scholar 

  • V. Ptuskin, V. Zirakashvili, E.S. Seo, Spectrum of galactic cosmic rays accelerated in supernova remnants. Astrophys. J. 718, 31–36 (2010). arXiv:1006.0034

    Article  ADS  Google Scholar 

  • E. Quataert, A. Loeb, Nonthermal THz to TeV emission from stellar wind shocks in the galactic center. Astrophys. J. Lett. 635, L45–L48 (2005). arXiv:astro-ph/0509265

    Article  ADS  Google Scholar 

  • C.E. Rakowski, J.M. Laming, P. Ghavamian, The heating of thermal electrons in fast collisionless shocks: the integral role of cosmic rays. Astrophys. J. 684, 348–357 (2008). arXiv:0805.3084

    Article  ADS  Google Scholar 

  • C.E. Rakowski, J.M. Laming, U. Hwang, K.A. Eriksen et al., The effect of a cosmic ray precursor in SN 1006? Astrophys. J. Lett. 735, L21 (2011). arXiv:1104.3736

    Article  ADS  Google Scholar 

  • J.C. Raymond, Theoretical models of shock waves in the interstellar medium. Ph.D. thesis, The University of Wisconsin-Madison (1976)

  • J.C. Raymond, Shock waves in the interstellar medium. Astrophys. J. Suppl. Ser. 39, 1–27 (1979)

    Article  ADS  Google Scholar 

  • J.C. Raymond, Supernova-remnant shock waves close up. Publ. Astron. Soc. Pac. 103, 781–786 (1991)

    Article  ADS  Google Scholar 

  • J.C. Raymond, P.A. Isenberg, J.M. Laming, Non-Maxwellian proton velocity distributions in nonradiative shocks. Astrophys. J. 682, 408–415 (2008). arXiv:0804.3808

    Article  ADS  Google Scholar 

  • J.C. Raymond, P.F. Winkler, W.P. Blair, J. Lee et al., Non-Maxwellian Hα profiles in Tycho’s supernova remnant. Astrophys. J. Lett. 712, 901–907 (2010)

    Article  ADS  Google Scholar 

  • J.C. Raymond, J. Vink, E.A. Helder, A. de Laat, Effects of neutral hydrogen on cosmic-ray precursors in supernova remnant shock waves. Astrophys. J. Lett. 731, L14 (2011). arXiv:1103.3211

    Article  ADS  Google Scholar 

  • J.E. Reed, J.J. Hester, A.C. Fabian, P.F. Winkler, The three-dimensional structure of the Cassiopeia A supernova remnant. I. The spherical shell. Astrophys. J. 440, 706–721 (1995)

    Article  ADS  Google Scholar 

  • M. Renaud et al., The signature of 44Ti in Cassiopeia A revealed by IBIS/ISGRI on INTEGRAL. Astrophys. J. Lett. 647, L41–L44 (2006)

    Article  ADS  Google Scholar 

  • B. Reville, A.R. Bell, A filamentation instability for streaming cosmic-rays (2011). arXiv:1109.5690

  • B. Reville, J.G. Kirk, P. Duffy, Steady-state solutions in nonlinear diffusive shock acceleration. Astrophys. J. 694, 951–958 (2009). arXiv:0812.3993

    Article  ADS  Google Scholar 

  • M.G. Revnivtsev, E.M. Churazov, S.Y. Sazonov, R.A. Sunyaev et al., Hard X-ray view of the past activity of Sgr A* in a natural Compton mirror. Astron. Astrophys. 425, L49–L52 (2004). arXiv:astro-ph/0408190

    Article  ADS  Google Scholar 

  • S.P. Reynolds, Models of synchrotron X-rays from shell supernova remnants. Astrophys. J. 493, 375 (1998)

    Article  ADS  Google Scholar 

  • S.P. Reynolds, Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89–126 (2008)

    Article  ADS  Google Scholar 

  • S.P. Reynolds, R.A. Chevalier, Nonthermal radiation from supernova remnants in the adiabatic stage of evolution. Astrophys. J. 245, 912 (1981)

    Article  ADS  Google Scholar 

  • S.P. Reynolds, D.C. Ellison, Electron acceleration in Tycho’s and Kepler’s supernova remnants—spectral evidence of Fermi shock acceleration. Astrophys. J. Lett. 399, L75–L78 (1992)

    Article  ADS  Google Scholar 

  • S.P. Reynolds, J.W. Keohane, Maximum energies of shock-accelerated electrons in young shell supernova remnants. Astrophys. J. 525, 368–374 (1999)

    Article  ADS  Google Scholar 

  • S.P. Reynolds, K.J. Borkowski, U. Hwang, J.P. Hughes et al., A deep Chandra observation of Kepler’s supernova remnant: a type Ia event with circumstellar interaction. Astrophys. J. Lett. 668, L135–L138 (2007). arXiv:0708.3858

    Article  ADS  Google Scholar 

  • S.P. Reynolds, K.J. Borkowski, D.A. Green, U. Hwang et al., The youngest galactic supernova remnant: G1.9+0.3. Astrophys. J. Lett. 680, L41–L44 (2008). arXiv:0803.1487

    Article  ADS  Google Scholar 

  • S.P. Reynolds, B.M. Gaensler, F. Bocchino, Magnetic fields in supernova remnants and pulsar-wind nebulae. Space Sci. Rev. 166, 231–261 (2011). arXiv:1104.4047

    Article  ADS  Google Scholar 

  • J. Rho, K.K. Dyer, K.J. Borkowski, S.P. Reynolds, X-ray synchrotron-emitting Fe-rich ejecta in supernova remnant RCW 86. Astrophys. J. 581, 1116–1131 (2002). arXiv:astro-ph/0208013

    Article  ADS  Google Scholar 

  • M. Rosado, E. Le Coarer, Y.P. Georgelin, Kinematics of supernova remnants in the small Magellanic cloud. I. The SNRs inside the nebular complex N 19, the SNR 0046-73.5 and the SNR 0050-72.8. Astron. Astrophys. 286, 231–242 (1994)

    ADS  Google Scholar 

  • R. Rothenflug et al., Geometry of the non-thermal emission in SN 1006. Astron. Astrophys. 425, 121–131 (2004)

    Article  ADS  Google Scholar 

  • G. Salvesen, J.C. Raymond, R.J. Edgar, Shock speed, cosmic ray pressure, and gas temperature in the Cygnus loop. Astrophys. J. 702, 327–339 (2009). arXiv:0812.2515

    Article  ADS  Google Scholar 

  • E.M. Schlegel, A new subclass of type II supernovae? Mon. Not. R. Astron. Soc. 244, 269–271 (1990)

    ADS  Google Scholar 

  • K.M. Schure, A.R. Bell, A long-wavelength instability involving the stress tensor. MNRAS 1451 (2011). arXiv:1107.5817

  • K.M. Schure, J. Vink, G. García-Segura, A. Achterberg, Jets as diagnostics of the circumstellar medium and the explosion energetics of supernovae: the case of Cassiopeia A. Astrophys. J. 686, 399–407 (2008). arXiv:0806.4617

    Article  ADS  Google Scholar 

  • K.M. Schure, D. Kosenko, J.S. Kaastra, R. Keppens et al., A new radiative cooling curve based on an up-to-date plasma emission code. Astron. Astrophys. 508, 751–757 (2009). arXiv:0909.5204

    Article  ADS  Google Scholar 

  • K.M. Schure, A. Achterberg, R. Keppens, J. Vink, Time-dependent particle acceleration in supernova remnants in different environments. Mon. Not. R. Astron. Soc. 406, 2633–2649 (2010). arXiv:1004.2766

    Article  ADS  Google Scholar 

  • K.M. Schure, A.R. Bell, L. O’C Drury , A.M. Bykov, Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev. 14 (2012). arXiv:1203.1637

  • I.S. Shklovskii, Rep. Acad. USSR 90, 983 (1953)

    Google Scholar 

  • J.S. Shklovsky, Supernovae. Interscience Monographs and Texts in Physics and Astronomy (Wiley, London, 1968)

    Google Scholar 

  • P. Slane, B.M. Gaensler, T.M. Dame, J.P. Hughes et al., Nonthermal X-ray emission from the shell-type supernova remnant G347.3-0.5. Astrophys. J. 525, 357–367 (1999)

    Article  ADS  Google Scholar 

  • P. Slane et al., RX J0852.0-4622: another nonthermal shell-type supernova remnant (G266.2-1.2). Astrophys. J. 548, 814–819 (2001)

    Article  ADS  Google Scholar 

  • R.C. Smith, R.P. Kirshner, W.P. Blair, P.F. Winkler, Six Balmer-dominated supernova remnants. Astrophys. J. 375, 652–662 (1991)

    Article  ADS  Google Scholar 

  • J. Sollerman, P. Ghavamian, P. Lundqvist, R.C. Smith, High resolution spectroscopy of Balmer-dominated shocks in the RCW 86, Kepler and SN 1006 supernova remnants. Astron. Astrophys. 407, 249–257 (2003). arXiv:astro-ph/0306196

    Article  ADS  Google Scholar 

  • L. Spitzer, Physical Processes in the Interstellar Medium (Wiley-VCH, New Jork, 1978)

    Google Scholar 

  • F.R. Stephenson, D.A. Green, Historical Supernovae and Their Remnants, vol. 5 (Clarendon, Oxford, 2002)

    Book  Google Scholar 

  • M. Su, T.R. Slatyer, D.P. Finkbeiner, Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind? Astrophys. J. 724, 1044–1082 (2010). arXiv:1005.5480

    Article  ADS  Google Scholar 

  • R.A. Sunyaev, M. Markevitch, M. Pavlinsky, The center of the galaxy in the recent past—a view from GRANAT. Astrophys. J. 407, 606–610 (1993)

    Article  ADS  Google Scholar 

  • G.A. Tammann, W. Loeffler, A. Schroeder, The galactic supernova rate. Astrophys. J. Suppl. Ser. 92, 487–493 (1994)

    Article  ADS  Google Scholar 

  • T. Tanaka, A. Allafort, J. Ballet, S. Funk et al., Gamma-ray observations of the supernova remnant RX J0852.0-4622 with the Fermi large area telescope. Astrophys. J. Lett. 740, L51 (2011). arXiv:1109.4658

    Article  ADS  Google Scholar 

  • V. Tatischeff, Radio emission and nonlinear diffusive shock acceleration of cosmic rays in the supernova SN 1993J. Astron. Astrophys. 499, 191–213 (2009). arXiv:0903.2944

    Article  ADS  Google Scholar 

  • M. Tavani, G. Barbiellini, A. Argan, A. Bulgarelli et al., The AGILE space mission. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 588, 52–62 (2008)

    Article  ADS  Google Scholar 

  • M. Tavani, A. Giuliani, A.W. Chen, A. Argan et al., Direct evidence for hadronic cosmic-ray acceleration in the supernova remnant IC 443. Astrophys. J. Lett. 710, L151–L155 (2010). arXiv:1001.5150

    Article  ADS  Google Scholar 

  • R. Terrier, G. Ponti, G. Bélanger, A. Decourchelle et al., Fading hard X-ray emission from the galactic center molecular cloud sgr B2. Astrophys. J. 719, 143–150 (2010)

    Article  ADS  Google Scholar 

  • L.S. The et al., CGRO/OSSE observations of the Cassiopeia A SNR. Astron. Astrophys. Suppl. Ser. 120, C357 (1996)

    Article  ADS  Google Scholar 

  • W.W. Tian, Z. Li, D.A. Leahy, Q.D. Wang, VLA and XMM-Newton observations of the SNR W41/TeV gamma-ray source HESS J1834-087. Astrophys. J. Lett. 657, L25–L28 (2007). arXiv:astro-ph/0612296

    Article  ADS  Google Scholar 

  • D.F. Torres, E. Domingo-Santamaría, G.E. Romero, High-energy gamma rays from stellar associations. Astrophys. J. Lett. 601, L75–L78 (2004). arXiv:astro-ph/0312128

    Article  ADS  Google Scholar 

  • D.F. Torres, H. Li, Y. Chen, A. Cillis et al., Cosmic rays in the surroundings of SNR G35.6-0.4. Mon. Not. R. Astron. Soc. 417, 3072–3079 (2011). arXiv:1107.3470

    Article  ADS  Google Scholar 

  • J.K. Truelove, C.F. McKee, Evolution of nonradiative supernova remnants. Astrophys. J. Suppl. Ser. 120, 299–326 (1999)

    Article  ADS  Google Scholar 

  • Y. Uchiyama, F.A. Aharonian, Fast variability of nonthermal X-ray emission in Cassiopeia A: probing electron acceleration in reverse-shocked ejecta. Astrophys. J. Lett. 677, L105–L108 (2008). arXiv:0803.3410

    Article  ADS  Google Scholar 

  • Y. Uchiyama, F.A. Aharonian, T. Tanaka, T. Takahashi et al., Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449, 576–578 (2007)

    Article  ADS  Google Scholar 

  • Y. Uchiyama, R.D. Blandford, S. Funk, H. Tajima et al., Gamma-ray emission from crushed clouds in supernova remnants. Astrophys. J. Lett. 723, L122–L126 (2010). arXiv:1008.1840

    Article  ADS  Google Scholar 

  • A. Valinia, V. Tatischeff, K. Arnaud, K. Ebisawa et al., On the origin of the iron K line in the spectrum of the galactic X-ray background. Astrophys. J. 543, 733–739 (2000). arXiv:astro-ph/0006202

    Article  ADS  Google Scholar 

  • M. van Adelsberg, K. Heng, R. McCray, J.C. Raymond, Spatial structure and collisionless electron heating in Balmer-dominated shocks. Astrophys. J. 689, 1089–1104 (2008). arXiv:0803.2521

    Article  ADS  Google Scholar 

  • S. van den Bergh, Optical studies of Cassiopeia A. III. Spectra of the supernova remnant. Astrophys. J. 165, 457 (1971)

    Article  ADS  Google Scholar 

  • H. van der Laan, Expanding supernova remnants and galactic radio sources. Mon. Not. R. Astron. Soc. 124, 125 (1962)

    ADS  Google Scholar 

  • A.J. van Marle, N. Langer, G. García-Segura, Wind-blown bubbles around massive stars: the effects of stellar wind and photo-ionization on the circumstellar medium, in Revista Mexicana de Astronomia y Astrofisica Conference Series, vol. 22, ed. by G. Garcia-Segura. G. Tenorio-Tagle, J. Franco, H.W. Yorke (2004), pp. 136–139

    Google Scholar 

  • B. van Veelen, N. Langer, J. Vink, G. García-Segura et al., The hydrodynamics of the supernova remnant Cassiopeia A. The influence of the progenitor evolution on the velocity structure and clumping. Astron. Astrophys. 503, 495–503 (2009). arXiv:0907.1197

    Article  ADS  Google Scholar 

  • R.J. van Weeren, H.J.A. Röttgering, M. Brüggen, M. Hoeft, Particle acceleration on megaparsec scales in a merging galaxy cluster. Science 330, 347 (2010). arXiv:1010.4306

    Article  ADS  Google Scholar 

  • J. Vink, A review of X-ray observations of supernova remnants. Nucl. Phys. B, Proc. Suppl. 132, 21–30 (2004). arXiv:astro-ph/0311406

    Article  ADS  Google Scholar 

  • J. Vink, Non-thermal X-ray emission from supernova remnants, in AIP Conf. Proc. 745: High Energy Gamma-Ray Astronomy, ed. by F.A. Aharonian, H.J. Völk, D. Horns (2005), pp. 160–171

    Google Scholar 

  • J. Vink, X-ray high resolution and imaging spectroscopy of supernova remnants, in The X-ray Universe 2005, ed. by A. Wilson. ESA SP-604, vol. 1 (ESA, ESTEC, The Netherlands, 2006), p. 319

    Google Scholar 

  • J. Vink, Multiwavelength signatures of cosmic ray acceleration by young supernova remnants, in High Energy Gamma-Ray Astronomy: Proceedings of the 4th International Meeting on High Energy Gamma-Ray Astronomy, vol. 1085 (AIP, College Park, 2008a), pp. 169–180

    Google Scholar 

  • J. Vink, Non-thermal bremsstrahlung from supernova remnants and the effect of Coulomb losses. Astron. Astrophys. 486, 837–841 (2008b). arXiv:0806.4393

    Article  ADS  Google Scholar 

  • J. Vink, The kinematics of Kepler’s supernova remnant as revealed by Chandra. Astrophys. J. 689, 231–241 (2008c). arXiv:0803.4011

    Article  ADS  Google Scholar 

  • J. Vink, J.M. Laming, On the magnetic fields and particle acceleration in Cassiopeia A. Astrophys. J. 584, 758–769 (2003). arXiv:astro-ph/0210669

    Article  ADS  Google Scholar 

  • J. Vink, J.S. Kaastra, J.A.M. Bleeker, X-ray spectroscopy of the supernova remnant RCW 86. A new challenge for modeling the emission from supernova remnants. Astron. Astrophys. 328, 628–633 (1997)

    ADS  Google Scholar 

  • J. Vink, H. Bloemen, J.S. Kaastra, J.A.M. Bleeker, The expansion of Cassiopeia A as seen in X-rays. Astron. Astrophys. 339, 201–207 (1998)

    ADS  Google Scholar 

  • J. Vink et al., Detection of the 67.9 and 78.4 keV lines associated with the radioactive decay of 44Ti in Cassiopeia A. Astrophys. J. Lett. 560, L79–L82 (2001)

    Article  ADS  Google Scholar 

  • J. Vink, J. Bleeker, K. van der Heyden, A. Bykov et al., The X-ray synchrotron emission of RCW 86 and the implications for its age. Astrophys. J. Lett. 648, L33–L37 (2006)

    Article  ADS  Google Scholar 

  • J. Vink, R. Yamazaki, E.A. Helder, K.M. Schure, The relation between post-shock temperature, cosmic-ray pressure, and cosmic-ray escape for non-relativistic shocks. Astrophys. J. 722, 1727–1734 (2010). arXiv:1008.4367

    Article  ADS  Google Scholar 

  • A. Vladimirov, D.C. Ellison, A. Bykov, Nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 652, 1246–1258 (2006). arXiv:astro-ph/0606433

    Article  ADS  Google Scholar 

  • A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Turbulence dissipation and particle injection in nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 688, 1084–1101 (2008). arXiv:0807.1321

    Article  ADS  Google Scholar 

  • A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Spectra of magnetic fluctuations and relativistic particles produced by a nonresonant wave instability in supernova remnant shocks. Astrophys. J. Lett. 703, L29–L32 (2009). arXiv:0908.2602

    Article  ADS  Google Scholar 

  • H.J. Völk, E.G. Berezhko, L.T. Ksenofontov, Magnetic field amplification in Tycho and other shell-type supernova remnants. Astron. Astrophys. 433, 229–240 (2005)

    Article  ADS  Google Scholar 

  • A.Y. Wagner, J.J. Lee, J.C. Raymond, T.W. Hartquist et al., A cosmic-ray precursor model for a Balmer-dominated shock in Tycho’s supernova remnant. Astrophys. J. 690, 1412–1423 (2009). arXiv:0809.2504

    Article  ADS  Google Scholar 

  • C.Y. Wang, Rayleigh-Taylor instabilities in type Ia supernova remnants undergoing cosmic ray particle acceleration—low adiabatic index solutions. Mon. Not. R. Astron. Soc. 415, 83–92 (2011). arXiv:1011.3129

    Article  ADS  Google Scholar 

  • Z.R. Wang, Q.Y. Qu, Y. Chen, Is RX J1713.7-3946 the remnant of the AD393 guest star? Astron. Astrophys. 318, L59–L61 (1997)

    ADS  Google Scholar 

  • M. Wardle, F. Yusef-Zadeh, Supernova remnant OH masers: signposts of cosmic collision. Science 296, 2350–2354 (2002)

    Article  ADS  Google Scholar 

  • J.S. Warren, J.P. Hughes, C. Badenes, P. Ghavamian et al., Cosmic-ray acceleration at the forward shock in Tycho’s supernova remnant: evidence from Chandra X-ray observations. Astrophys. J. 634, 376–389 (2005). arXiv:astro-ph/0507478

    Article  ADS  Google Scholar 

  • W.R. Webber, A new estimate of the local interstellar energy density and ionization rate of galactic cosmic rays. Astrophys. J. 506, 329–334 (1998)

    Article  ADS  Google Scholar 

  • T.C. Weekes, M.F. Cawley, D.J. Fegan, K.G. Gibbs et al., Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. Astrophys. J. 342, 379–395 (1989)

    Article  ADS  Google Scholar 

  • K.W. Weiler, N. Panagia, M.J. Montes, R.A. Sramek, Radio emission from supernovae and gamma-ray bursters. Annu. Rev. Astron. Astrophys. 40, 387–438 (2002)

    Article  ADS  Google Scholar 

  • B.E. Westerlund, OB stars near the supernova remnant RCW 86. Astron. J. 74, 879–881 (1969)

    Article  ADS  Google Scholar 

  • R. Willingale, R.G. West, J.P. Pye, G.C. Stewart, ROSAT PSPC observations of the remnant of SN 1006. Mon. Not. R. Astron. Soc. 278, 749–762 (1996)

    ADS  Google Scholar 

  • P.F. Winkler, G. Gupta, K.S. Long, The SN 1006 remnant: optical proper motions, deep imaging, distance, and brightness at maximum. Astrophys. J. 585, 324–335 (2003)

    Article  ADS  Google Scholar 

  • E. Wommer, F. Melia, M. Fatuzzo, Diffuse TeV emission at the galactic centre. Mon. Not. R. Astron. Soc. 387, 987–997 (2008). arXiv:0804.3111

    Article  ADS  Google Scholar 

  • N.J. Wright, J.J. Drake, The massive star-forming region Cygnus OB2. I. Chandra catalog of association members. Astrophys. J. Suppl. Ser. 184, 84–99 (2009). arXiv:0908.0549

    Article  ADS  Google Scholar 

  • J.H.K. Wu, E.M.H. Wu, C.Y. Hui, P.H.T. Tam et al., Discovery of gamma-ray emission from the supernova remnant Kes 17 with Fermi large area telescope. Astrophys. J. Lett. 740, L12 (2011). arXiv:1108.4084

    Article  ADS  Google Scholar 

  • N.E. Yanasak, M.E. Wiedenbeck, R.A. Mewaldt, A.J. Davis et al., Measurement of the secondary radionuclides 10Be, 26Al, 36Cl, 54Mn, and 14C and implications for the galactic cosmic-ray age. Astrophys. J. 563, 768–792 (2001)

    Article  ADS  Google Scholar 

  • L.R. Yungelson, E.P.J. van den Heuvel, J.S. Vink, S.F. Portegies Zwart et al., On the evolution and fate of super-massive stars. Astron. Astrophys. 477, 223–237 (2008). arXiv:0710.1181

    Article  ADS  Google Scholar 

  • F. Yusef-Zadeh, M. Muno, M. Wardle, D.C. Lis, The origin of diffuse X-ray and γ-ray emission from the galactic center region: cosmic-ray particles. Astrophys. J. 656, 847–869 (2007). arXiv:astro-ph/0608710

    Article  ADS  Google Scholar 

  • V.N. Zirakashvili, F. Aharonian, Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants. Astron. Astrophys. 465, 695–702 (2007). arXiv:astro-ph/0612717

    Article  ADS  MATH  Google Scholar 

  • V.N. Zirakashvili, F.A. Aharonian, Nonthermal radiation of young supernova remnants: the case of RX J1713.7-3946. Astrophys. J. 708, 965–980 (2010). arXiv:0909.2285

    Article  ADS  Google Scholar 

  • V.N. Zirakashvili, V.S. Ptuskin, Diffusive shock acceleration with magnetic amplification by nonresonant streaming instability in supernova remnants. Astrophys. J. 678, 939–949 (2008). arXiv:0801.4488

    Article  ADS  Google Scholar 

  • K. Zubovas, A.R. King, S. Nayakshin, The milky way’s Fermi bubbles: echoes of the last quasar outburst? Mon. Not. R. Astron. Soc. 415, L21–L25 (2011). arXiv:1104.5443

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for carefully reading the manuscript. The authors thank the ISSI in Bern for their hospitality and for organizing the workshop that resulted in this chapter. This work has been supported by SAO grant GO0-11072X (E.A.H.). A.M.B. was supported in part by the Russian government grant 11.G34.31.0001 to Sankt-Petersburg State Politechnical University, and also by the RAS Presidium Program and by the RFBR grant 11-02-12082. He performed the simulations at the Joint Supercomputing Center (JSCC RAS) and the Supercomputing Center at Ioffe Institute, St. Petersburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Helder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helder, E.A., Vink, J., Bykov, A.M. et al. Observational Signatures of Particle Acceleration in Supernova Remnants. Space Sci Rev 173, 369–431 (2012). https://doi.org/10.1007/s11214-012-9919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9919-8

Keywords

Navigation