R.K. Achterberg, B.J. Conrath, P.J. Gierasch, Cassini CIRS retrievals of ammonia in Jupiter’s upper troposphere. Icarus 182, 169–180 (2006). https://doi.org/10.1016/j.icarus.2005.12.020
ADS
Article
Google Scholar
A.F.O. Alexander, The Planet Saturn: A History of Observation, Theory, and Discovery (1962)
Google Scholar
M. Allison, Planetary waves in Jupiter’s equatorial atmosphere. Icarus 83, 282–307 (1990). https://doi.org/10.1016/0019-1035(90)90069-L
ADS
Article
Google Scholar
J.D. Anderson, G. Schubert, Saturn’s gravitational field, internal rotation, and interior structure. Science 317(5843), 1384 (2007). https://doi.org/10.1126/science.1144835
ADS
Article
Google Scholar
D.G. Andrews, J.R. Holton, C.B. Leovy, Middle Atmosphere Dynamics (Academic Press, New York, 1987)
Google Scholar
A. Antuñano, L.N. Fletcher, G.S. Orton, H. Melin, J.H. Rogers, J. Harrington, P.T. Donnelly, N. Rowe-Gurney, J.S.D. Blake, Infrared characterization of Jupiter’s equatorial disturbance cycle. Geophys. Res. Lett. 45, 10 (2018). https://doi.org/10.1029/2018GL080382
Article
Google Scholar
A. Antuñano, L.N. Fletcher, G.S. Orton, H. Melin, S. Milan, J. Rogers, T. Greathouse, J. Harrington, P.T. Donnelly, R. Giles, Jupiter’s atmospheric variability from long-term ground-based observations at 5 μm. Astron. J. 158(3), 130 (2019). https://doi.org/10.3847/1538-3881/ab2cd6
ADS
Article
Google Scholar
K.L. Aplin, G. Fischer, Lightning detection in planetary atmospheres. Weather 72(2), 46–50 (2017). https://doi.org/10.1002/wea.2817
ADS
Article
Google Scholar
X.S. Asay-Davis, P.S. Marcus, M.H. Wong, I. de Pater, Changes in Jupiter’s zonal velocity between 1979 and 2008. Icarus 211, 1215–1232 (2011). https://doi.org/10.1016/j.icarus.2010.11.018
ADS
Article
Google Scholar
D.H. Atkinson, J.B. Pollack, A. Seiff, The Galileo probe Doppler wind experiment: measurement of the deep zonal winds on Jupiter. J. Geophys. Res. 103, 22911–22928 (1998). https://doi.org/10.1029/98JE00060
ADS
Article
Google Scholar
K.H. Baines, P. Drossart, T.W. Momary, V. Formisano, C. Griffith, G. Bellucci, J.P. Bibring, R.H. Brown, B.J. Buratti, F. Capaccioni, P. Cerroni, R.N. Clark, A. Coradini, M. Combes, D.P. Cruikshank, R. Jaumann, Y. Langevin, D.L. Matson, T.B. Mccord, V. Mennella, R.M. Nelson, P.D. Nicholson, B. Sicardy, C. Sotin, The atmospheres of Saturn and Titan in the near-infrared: first results of Cassini/VIMS. Earth Moon Planets 96, 119–147 (2006)
ADS
Article
Google Scholar
K.H. Baines, A.A. Simon-Miller, G.S. Orton, H.A. Weaver, A. Lunsford, T.W. Momary, J. Spencer, A.F. Cheng, D.C. Reuter, D.E. Jennings, G.R. Gladstone, J. Moore, S.A. Stern, L.A. Young, H. Throop, P. Yanamandra-Fisher, B.M. Fisher, J. Hora, M.E. Ressler, Polar lightning and decadal-scale cloud variability on Jupiter. Science 318, 226–228 (2007). https://doi.org/10.1126/science.1147912
ADS
Article
Google Scholar
K.H. Baines, T.W. Momary, L.N. Fletcher, A.P. Showman, M. Roos-Serote, R.H. Brown, B.J. Buratti, R.N. Clark, P.D. Nicholson, Saturn’s North polar cyclone and hexagon at depth revealed by Cassini/VIMS. Planet. Space Sci. 57, 1671–1681 (2009). https://doi.org/10.1016/j.pss.2009.06.026
ADS
Article
Google Scholar
M.P. Baldwin, L.J. Gray, T.J. Dunkerton, K. Hamilton, P.H. Haynes, W.J. Randel, J.R. Holton, M.J. Alexander, I. Hirota, T. Horinouchi, D.B.A. Jones, J.S. Kinnersley, C. Marquardt, K. Sato, M. Takahashi, The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001). https://doi.org/10.1029/1999RG000073
ADS
Article
Google Scholar
G.L. Bjoraker, M.H. Wong, I. de Pater, M. Ádámkovics, Jupiter’s deep cloud structure revealed using Keck observations of spectrally resolved line shapes. Astrophys. J. 810, 122 (2015). https://doi.org/10.1088/0004-637X/810/2/122
ADS
Article
Google Scholar
S.J. Bolton, A. Adriani, V. Adumitroaie, M. Allison, J. Anderson, S. Atreya, J. Bloxham, S. Brown, J.E.P. Connerney, E. DeJong, W. Folkner, D. Gautier, D. Grassi, S. Gulkis, T. Guillot, C. Hansen, W.B. Hubbard, L. Iess, A. Ingersoll, M. Janssen, J. Jorgensen, Y. Kaspi, S.M. Levin, C. Li, J. Lunine, Y. Miguel, A. Mura, G. Orton, T. Owen, M. Ravine, E. Smith, P. Steffes, E. Stone, D. Stevenson, R. Thorne, J. Waite, D. Durante, R.W. Ebert, T.K. Greathouse, V. Hue, M. Parisi, J.R. Szalay, R. Wilson, Jupiter’s interior and deep atmosphere: the initial pole-to-pole passes with the Juno spacecraft. Science 356, 821–825 (2017). https://doi.org/10.1126/science.aal2108
ADS
Article
Google Scholar
S. Brown, M. Janssen, V. Adumitroaie, S. Atreya, S. Bolton, S. Gulkis, A. Ingersoll, S. Levin, C. Li, L. Li, J. Lunine, S. Misra, G. Orton, P. Steffes, F. Tabataba-Vakili, I. Kolmašová, M. Imai, O. Santolík, W. Kurth, G. Hospodarsky, D. Gurnett, J. Connerney, Prevalent lightning sferics at 600 megahertz near Jupiter’s poles. Nature 558, 87–90 (2018). https://doi.org/10.1038/s41586-018-0156-5
ADS
Article
Google Scholar
H. Cao, D.J. Stevenson, Zonal flow magnetic field interaction in the semi-conducting region of giant planets. Icarus 296, 59–72 (2017). https://doi.org/10.1016/j.icarus.2017.05.015
ADS
Article
Google Scholar
J.G. Charney, The dynamics of long waves in a baroclinic westerly current. J. Atmos. Sci. 4, 136–162 (1947). https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2
ADS
MathSciNet
Article
Google Scholar
D.S. Choi, A.P. Showman, R.H. Brown, Cloud features and zonal wind measurements of Saturn’s atmosphere as observed by Cassini/VIMS. J. Geophys. Res., Planets 114(13), 4007 (2009). https://doi.org/10.1029/2008JE003254
ADS
Article
Google Scholar
B.J. Conrath, P.J. Gierasch, Global variation of the para hydrogen fraction in Jupiter’s atmosphere and implications for dynamics on the outer planets. Icarus 57, 184–204 (1984). https://doi.org/10.1016/0019-1035(84)90065-4
ADS
Article
Google Scholar
B.J. Conrath, J.A. Pirraglia, Thermal structure of Saturn from Voyager infrared measurements—implications for atmospheric dynamics. Icarus 53, 286–292 (1983). https://doi.org/10.1016/0019-1035(83)90148-3
ADS
Article
Google Scholar
B.J. Conrath, P.J. Gierasch, S.S. Leroy, Temperature and circulation in the stratosphere of the outer planets. Icarus 83, 255–281 (1990). https://doi.org/10.1016/0019-1035(90)90068-K
ADS
Article
Google Scholar
B.J. Conrath, P.J. Gierasch, E.A. Ustinov, Thermal structure and para hydrogen fraction on the outer planets from Voyager IRIS measurements. Icarus 135, 501–517 (1998). https://doi.org/10.1006/icar.1998.6000
ADS
Article
Google Scholar
I. de Pater, P.N. Romani, S.K. Atreya, Possible microwave absorption by H2S gas in Uranus’ and Neptune’s atmospheres. Icarus 91, 220–233 (1991). https://doi.org/10.1016/0019-1035(91)90020-T
ADS
Article
Google Scholar
I. de Pater, D. Dunn, P. Romani, K. Zahnle, Reconciling Galileo probe data and ground-based radio observations of ammonia on Jupiter. Icarus 149, 66–78 (2001). https://doi.org/10.1006/icar.2000.6527
ADS
Article
Google Scholar
I. de Pater, M.H. Wong, P. Marcus, S. Luszcz-Cook, M. Ádámkovics, A. Conrad, X. Asay-Davis, Ch. Go, Persistent rings in and around Jupiter’s anticyclones - observations and theory. Icarus 210(2), 742–762 (2010). https://doi.org/10.1016/j.icarus.2010.07.027
ADS
Article
Google Scholar
I. de Pater, L.N. Fletcher, S. Luszcz-Cook, D. DeBoer, B. Butler, H.B. Hammel, M.L. Sitko, G. Orton, P.S. Marcus, Neptune’s global circulation deduced from multi-wavelength observations. Icarus 237, 211–238 (2014). https://doi.org/10.1016/j.icarus.2014.02.030
ADS
Article
Google Scholar
I. de Pater, R.J. Sault, B. Butler, D. DeBoer, M.H. Wong, Peering through Jupiter’s clouds with radio spectral imaging. Science 352, 1198–1201 (2016). https://doi.org/10.1126/science.aaf2210
ADS
Article
Google Scholar
I. de Pater, R.J. Sault, M.H. Wong, L.N. Fletcher, D. DeBoer, B. Butler, Jupiter’s ammonia distribution derived from VLA maps at 3–37 GHz. Icarus 322, 168–191 (2019). https://doi.org/10.1016/j.icarus.2018.11.024
ADS
Article
Google Scholar
A.D. Del Genio, J.M. Barbara, Constraints on Saturn’s tropospheric general circulation from Cassini ISS images. Icarus 219, 689–700 (2012). https://doi.org/10.1016/j.icarus.2012.03.035
ADS
Article
Google Scholar
A.D. Del Genio, J.M. Barbara, J. Ferrier, A.P. Ingersoll, R.A. West, A.R. Vasavada, J. Spitale, C.C. Porco, Saturn eddy momentum fluxes and convection: first estimates from Cassini images. Icarus 189, 479–492 (2007)
ADS
Article
Google Scholar
A.D. Del Genio, R.K. Achterberg, K.H. Baines, F.M. Flasar, P.L. Read, A. Sánchez-Lavega, A.P. Showman, Saturn atmospheric structure and dynamics, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009), pp. 113–159. https://doi.org/10.1007/978-1-4020-9217-6_6, Chap. 6
Chapter
Google Scholar
T.E. Dowling, P.J. Gierasch, Cyclones and moist convection on Jovian planets. Bull. Am. Astron. Soc. 21, 946 (1989)
ADS
Google Scholar
U.A. Dyudina, A.P. Ingersoll, S.P. Ewald, C.C. Porco, G. Fischer, W. Kurth, M. Desch, A. Del Genio, J. Barbara, J. Ferrier, Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006. Icarus 190(2), 545–555 (2007)
ADS
Article
Google Scholar
U.A. Dyudina, A.P. Ingersoll, S.P. Ewald, C.C. Porco, G. Fischer, Y. Yair, Saturn’s visible lightning, its radio emissions, and the structure of the 2009–2011 lightning storms. Icarus 226, 1020–1037 (2013). https://doi.org/10.1016/j.icarus.2013.07.013
ADS
Article
Google Scholar
E.T. Eady, Long waves and cyclone waves. Tellus, Ser. A 1, 33–52 (1949). https://doi.org/10.1111/j.2153-3490.1949.tb01265.x
ADS
MathSciNet
Article
Google Scholar
K. Emanuel, Atmospheric Convection (Oxford University Press, London, 1994)
Google Scholar
G. Fischer, W.S. Kurth, D.A. Gurnett, P. Zarka, U.A. Dyudina, A.P. Ingersoll, S.P. Ewald, C.C. Porco, A. Wesley, C. Go, M. Delcroix, A giant thunderstorm on Saturn. Nature 475, 75–77 (2011). https://doi.org/10.1038/nature10205
ADS
Article
Google Scholar
F.M. Flasar, B.J. Conrath, J.A. Pirraglia, P.J. Gierasch, Voyager infrared observations of Uranus’ atmosphere—thermal structure and dynamics. J. Geophys. Res. 92, 15011–15018 (1987). https://doi.org/10.1029/JA092iA13p15011
ADS
Article
Google Scholar
L.N. Fletcher, Cycles of activity in the Jovian atmosphere. Geophys. Res. Lett. 44, 4725–4729 (2017). https://doi.org/10.1002/2017GL073806
ADS
Article
Google Scholar
L.N. Fletcher, P.G.J. Irwin, N.A. Teanby, G.S. Orton, P.D. Parrish, S.B. Calcutt, R. de Kok, C. Howett, N. Bowles, F.W. Taylor, Characterising Saturn’s vertical temperature structure from Cassini/CIRS. Icarus 189, 457–478 (2007a)
ADS
Article
Google Scholar
L.N. Fletcher, P.G.J. Irwin, N.A. Teanby, G.S. Orton, P.D. Parrish, S.B. Calcutt, N. Bowles, R. de Kok, C. Howett, F.W. Taylor, The meridional phosphine distribution in Saturn’s upper troposphere from Cassini/CIRS observations. Icarus 188, 72–88 (2007b). https://doi.org/10.1016/j.icarus.2006.10.029
ADS
Article
Google Scholar
L.N. Fletcher, G.S. Orton, N.A. Teanby, P.G.J. Irwin, Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus 202, 543–564 (2009a). https://doi.org/10.1016/j.icarus.2009.03.023
ADS
Article
Google Scholar
L.N. Fletcher, G.S. Orton, P. Yanamandra-Fisher, B.M. Fisher, P.D. Parrish, P.G.J. Irwin, Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging. Icarus 200, 154–175 (2009b). https://doi.org/10.1016/j.icarus.2008.11.019
ADS
Article
Google Scholar
L.N. Fletcher, G.S. Orton, O. Mousis, P. Yanamandra-Fisher, P.D. Parrish, P.G.J. Irwin, B.M. Fisher, L. Vanzi, T. Fujiyoshi, T. Fuse, A.A. Simon-Miller, E. Edkins, T.L. Hayward, J. De Buizer, Thermal structure and composition of Jupiter’s Great Red Spot from high-resolution thermal imaging. Icarus 208, 306–328 (2010). https://doi.org/10.1016/j.icarus.2010.01.005
ADS
Article
Google Scholar
L.N. Fletcher, G.S. Orton, J.H. Rogers, A.A. Simon-Miller, I. de Pater, M.H. Wong, O. Mousis, P.G.J. Irwin, M. Jacquesson, P.A. Yanamandra-Fisher, Jovian temperature and cloud variability during the 2009–2010 fade of the South Equatorial Belt. Icarus 213, 564–580 (2011a). https://doi.org/10.1016/j.icarus.2011.03.007
ADS
Article
Google Scholar
L.N. Fletcher, K.H. Baines, T.W. Momary, A.P. Showman, P.G.J. Irwin, G.S. Orton, M. Roos-Serote, C. Merlet, Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 μm nightside spectroscopy. Icarus 214, 510–533 (2011b). https://doi.org/10.1016/j.icarus.2011.06.006
ADS
Article
Google Scholar
L.N. Fletcher, B.E. Hesman, P.G.J. Irwin, K.H. Baines, T.W. Momary, A. Sánchez-Lavega, F.M. Flasar, P.L. Read, G.S. Orton, A. Simon-Miller, R. Hueso, G.L. Bjoraker, A. Mamoutkine, T. del Rio-Gaztelurrutia, J.M. Gomez, B. Buratti, R.N. Clark, P.D. Nicholson, C. Sotin, Thermal structure and dynamics of Saturn’s northern springtime disturbance. Science 332, 1413–1417 (2011c). https://doi.org/10.1126/science.1204774
ADS
Article
Google Scholar
L.N. Fletcher, I. de Pater, G.S. Orton, H.B. Hammel, M.L. Sitko, P.G.J. Irwin, Neptune at summer solstice: zonal mean temperatures from ground-based observations, 2003–2007. Icarus 231, 146–167 (2014). https://doi.org/10.1016/j.icarus.2013.11.035
ADS
Article
Google Scholar
L.N. Fletcher, T.K. Greathouse, G.S. Orton, J.A. Sinclair, R.S. Giles, P.G.J. Irwin, T. Encrenaz, Mid-infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus 278, 128–161 (2016a). https://doi.org/10.1016/j.icarus.2016.06.008
ADS
Article
Google Scholar
L.N. Fletcher, P.G.J. Irwin, R.K. Achterberg, G.S. Orton, F.M. Flasar, Seasonal variability of Saturn’s tropospheric temperatures, winds and para-H2 from Cassini far-IR spectroscopy. Icarus 264, 137–159 (2016b). https://doi.org/10.1016/j.icarus.2015.09.009
ADS
Article
Google Scholar
L.N. Fletcher, S. Guerlet, G.S. Orton, R.G. Cosentino, T. Fouchet, P.G.J. Irwin, L. Li, F.M. Flasar, N. Gorius, R. Morales-Juberías, Disruption of Saturn’s quasi-periodic equatorial oscillation by the Great Northern Storm. Nat. Astron. 1, 765–770 (2017a). https://doi.org/10.1038/s41550-017-0271-5
ADS
Article
Google Scholar
L.N. Fletcher, I. de Pater, W.T. Reach, M. Wong, G.S. Orton, P.G.J. Irwin, R.D. Gehrz, Jupiter’s para-H2 distribution from SOFIA/FORCAST and Voyager/IRIS 17–37 μm spectroscopy. Icarus 286, 223–240 (2017b). https://doi.org/10.1016/j.icarus.2016.10.002
ADS
Article
Google Scholar
L.N. Fletcher, G.S. Orton, J.H. Rogers, R.S. Giles, A.V. Payne, P.G.J. Irwin, M. Vedovato, Moist convection and the 2010–2011 revival of Jupiter’s South Equatorial Belt. Icarus 286, 94–117 (2017c). https://doi.org/10.1016/j.icarus.2017.01.001
ADS
Article
Google Scholar
L.N. Fletcher, T.K. Greathouse, J.I. Moses, S. Guerlet, R.A. West, Saturn’s Seasonally Changing Atmosphere: Thermal Structure, in Composition and Aerosols K.H. Baines, F.M. Flasar, N. Krupp, T.S. Stallard Cambridge Planetary Science (Cambridge University Press, New York, 2018), Chap. 10
Google Scholar
T. Fouchet, J.I. Moses, B.J. Conrath, Saturn: composition and chemistry, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (2009), p. 83. https://doi.org/10.1007/978-1-4020-9217-6_5, Chap. 5
Chapter
Google Scholar
A.J. Friedson, E.J. Gonzales, Inhibition of ordinary and diffusive convection in the water condensation zone of the ice giants and implications for their thermal evolution. Icarus 297, 160–178 (2017). https://doi.org/10.1016/j.icarus.2017.06.029
ADS
Article
Google Scholar
A.J. Friedson, J.I. Moses, General circulation and transport in Saturn’s upper troposphere and stratosphere. Icarus 218, 861–875 (2012). https://doi.org/10.1016/j.icarus.2012.02.004
ADS
Article
Google Scholar
P.M. Fry, L.A. Sromovsky, I. de Pater, H.B. Hammel, K.A. Rages, Detection and tracking of subtle cloud features on Uranus. Astron. J. 143, 150 (2012). https://doi.org/10.1088/0004-6256/143/6/150
ADS
Article
Google Scholar
E. Galanti, Y. Kaspi, Y. Miguel, T. Guillot, D. Durante, P. Racioppa, L. Iess, Saturn’s deep atmospheric flows revealed by the Cassini Grand Finale gravity measurements. arXiv e-prints (2019)
E. García-Melendo, S. Pérez-Hoyos, A. Sánchez-Lavega, R. Hueso, Saturn’s zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus 215, 62–74 (2011). https://doi.org/10.1016/j.icarus.2011.07.005
ADS
Article
Google Scholar
P.J. Gierasch, J.A. Magalhaes, B.J. Conrath, Zonal mean properties of Jupiter’s upper troposphere from Voyager infrared observations. Icarus 67, 456–483 (1986). https://doi.org/10.1016/0019-1035(86)90125-9
ADS
Article
Google Scholar
P.J. Gierasch, A.P. Ingersoll, D. Banfield, S.P. Ewald, P. Helfenstein, A. Simon-Miller, A. Vasavada, H.H. Breneman, D.A. Senske (Galileo Imaging Team), Observation of moist convection in Jupiter’s atmosphere. Nature 403, 628–630 (2000). https://doi.org/10.1038/35001017
ADS
Article
Google Scholar
R.S. Giles, L.N. Fletcher, P.G.J. Irwin, Latitudinal variability in Jupiter’s tropospheric disequilibrium species: GeH4, AsH3 and PH3. Icarus 289, 254–269 (2017). https://doi.org/10.1016/j.icarus.2016.10.023
ADS
Article
Google Scholar
S. Guerlet, T. Fouchet, B. Bézard, A.A. Simon-Miller, F.M. Flasar, Vertical and meridional distribution of ethane, acetylene and propane in Saturn’s stratosphere from CIRS/Cassini limb observations. Icarus 203, 214–232 (2009)
ADS
Article
Google Scholar
T. Guillot, Condensation of methane, ammonia, and water and the inhibition of convection in giant planets. Science 269, 1697–1699 (1995). https://doi.org/10.1126/science.7569896
ADS
Article
Google Scholar
T. Guillot, Y. Miguel, B. Militzer, W.B. Hubbard, Y. Kaspi, E. Galanti, H. Cao, R. Helled, S.M. Wahl, L. Iess, W.M. Folkner, D.J. Stevenson, J.I. Lunine, D.R. Reese, A. Biekman, M. Parisi, D. Durante, J.E.P. Connerney, S.M. Levin, S.J. Bolton, A suppression of differential rotation in Jupiter’s deep interior. Nature 555, 227–230 (2018). https://doi.org/10.1038/nature25775
ADS
Article
Google Scholar
D.L. Hartmann, The atmospheric general circulation and its variability. J. Meteorol. Soc. Jpn. Ser. II 85, 123–143 (2007)
Article
Google Scholar
P.H. Haynes, M.E. McIntyre, T.G. Shepherd, C.J. Marks, K.P. Shine, On the ‘downward control’ of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci. 48, 651–680 (1991). https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2
ADS
Article
Google Scholar
I.M. Held, A.Y. Hou, Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533 (1980). https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2
ADS
MathSciNet
Article
Google Scholar
R. Helled, E. Galanti, Y. Kaspi, Saturn’s fast spin determined from its gravitational field and oblateness. Nature 520(7546), 202–204 (2015). https://doi.org/10.1038/nature14278
ADS
Article
Google Scholar
S.L. Hess, H.A. Panofsky, in The Atmospheres of the Other Planets, ed. by T.F. Malone Compendium of Meteorology (American Meteorological Society, Boston, 1951), pp. 391–398
Google Scholar
T. Hockey, Galileo’s Planet: Observing Jupiter Before Photography (1999)
Google Scholar
M.D. Hofstadter, B.J. Butler, Seasonal change in the deep atmosphere of Uranus. Icarus 165, 168–180 (2003). https://doi.org/10.1016/S0019-1035(03)00174-X
ADS
Article
Google Scholar
J.R. Holton, An Introduction to Dynamic Meteorology (Academic Press, San Diego, 2004). ISBN 0123540151
Google Scholar
J.R. Holton, R.S. Lindzen, An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 29, 1076–1080 (1972). https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2
ADS
Article
Google Scholar
L. Iess, B. Militzer, Y. Kaspi, P. Nicholson, D. Durante, P. Racioppa, A. Anabtawi, E. Galanti, W. Hubbard, M.J. Mariani, P. Tortora, S. Wahl, M. Zannoni, Measurement and implications of Saturn’s gravity field and ring mass. Science (2019). https://doi.org/10.1126/science.aat2965
Article
Google Scholar
A. Ingersoll, R. Beebe, J. Mitchell, G. Garneau, G. Yagi, J.P. Muller, Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res. 86, 8733–8743 (1981)
ADS
Article
Google Scholar
A.P. Ingersoll, P.J. Gierasch, D. Banfield, A.R. Vasavada (Galileo Imaging Team), Moist convection as an energy source for the large-scale motions in Jupiter’s atmosphere. Nature 403, 630–632 (2000). https://doi.org/10.1038/35001021
ADS
Article
Google Scholar
A.P. Ingersoll, T.E. Dowling, P.J. Gierasch, G.S. Orton, P.L. Read, A. Sánchez-Lavega, A.P. Showman, A.A. Simon-Miller, A.R. Vasavada, Dynamics of Jupiter’s atmosphere, in Jupiter. The Planet, Satellites and Magnetosphere (2004), pp. 105–128
Google Scholar
A.P. Ingersoll, V. Adumitroaie, M.D. Allison, S. Atreya, A.A. Bellotti, S.J. Bolton, S.T. Brown, S. Gulkis, M.A. Janssen, S.M. Levin, C. Li, L. Li, J.I. Lunine, G.S. Orton, F.A. Oyafuso, P.G. Steffes, Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer. Geophys. Res. Lett. 44, 7676–7685 (2017). https://doi.org/10.1002/2017GL074277
ADS
Article
Google Scholar
P.G.J. Irwin, P. Parrish, T. Fouchet, S.B. Calcutt, F.W. Taylor, A.A. Simon-Miller, C.A. Nixon, Retrievals of jovian tropospheric phosphine from Cassini/CIRS. Icarus 172, 37–49 (2004). https://doi.org/10.1016/j.icarus.2003.09.027
ADS
Article
Google Scholar
P. Irwin, N. Teanby, R. de Kok, L. Fletcher, C. Howett, C. Tsang, C. Wilson, S. Calcutt, C. Nixon, P. Parrish, The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Quant. Spectrosc. Radiat. Transf. 109(6), 1136–1150 (2008)
ADS
Article
Google Scholar
P.G.J. Irwin, D. Toledo, R. Garland, N.A. Teanby, L.N. Fletcher, G.A. Orton, B. Bézard, Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere. Nat. Astron. 2, 420–427 (2018). https://doi.org/10.1038/s41550-018-0432-1
ADS
Article
Google Scholar
M.A. Janssen, A.P. Ingersoll, M.D. Allison, S. Gulkis, A.L. Laraia, K.H. Baines, S.G. Edgington, Y.Z. Anderson, K. Kelleher, F.A. Oyafuso, Saturn’s thermal emission at 2.2-cm wavelength as imaged by the Cassini RADAR radiometer. Icarus 226, 522–535 (2013). https://doi.org/10.1016/j.icarus.2013.06.008
ADS
Article
Google Scholar
E. Karkoschka, Clouds of high contrast on Uranus. Science 280, 570 (1998). https://doi.org/10.1126/science.280.5363.570
ADS
Article
Google Scholar
E. Karkoschka, Neptune’s rotational period suggested by the extraordinary stability of two features. Icarus 215, 439–448 (2011). https://doi.org/10.1016/j.icarus.2011.05.013
ADS
Article
Google Scholar
E. Karkoschka, M. Tomasko, The haze and methane distributions on Uranus from HST-STIS spectroscopy. Icarus 202, 287–309 (2009). https://doi.org/10.1016/j.icarus.2009.02.010
ADS
Article
Google Scholar
E. Karkoschka, M.G. Tomasko, The haze and methane distributions on Neptune from HST-STIS spectroscopy. Icarus 211, 780–797 (2011). https://doi.org/10.1016/j.icarus.2010.08.013
ADS
Article
Google Scholar
Y. Kaspi, G.R. Flierl, Formation of jets by baroclinic instability on gas planet atmospheres. J. Atmos. Sci. 64, 3177 (2007). https://doi.org/10.1175/JAS4009.1
ADS
Article
Google Scholar
Y. Kaspi, A.P. Showman, Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters. Astrophys. J. 804, 60 (2015). https://doi.org/10.1088/0004-637X/804/1/60
ADS
Article
Google Scholar
Y. Kaspi, A.P. Showman, W.B. Hubbard, O. Aharonson, R. Helled, Atmospheric confinement of jet streams on Uranus and Neptune. Nature 497, 344–347 (2013). https://doi.org/10.1038/nature12131
ADS
Article
Google Scholar
Y. Kaspi, E. Galanti, W.B. Hubbard, D.J. Stevenson, S.J. Bolton, L. Iess, T. Guillot, J. Bloxham, J.E.P. Connerney, H. Cao, D. Durante, W.M. Folkner, R. Helled, A.P. Ingersoll, S.M. Levin, J.I. Lunine, Y. Miguel, B. Militzer, M. Parisi, S.M. Wahl, Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature 555, 223–226 (2018). https://doi.org/10.1038/nature25793
ADS
Article
Google Scholar
A.L. Laraia, A.P. Ingersoll, M.A. Janssen, S. Gulkis, F. Oyafuso, M. Allison, Analysis of Saturn’s thermal emission at 2.2-cm wavelength: spatial distribution of ammonia vapor. Icarus 226, 641–654 (2013). https://doi.org/10.1016/j.icarus.2013.06.017
ADS
Article
Google Scholar
J. Leconte, F. Selsis, F. Hersant, T. Guillot, Condensation-inhibited convection in hydrogen-rich atmospheres. Stability against double-diffusive processes and thermal profiles for Jupiter, Saturn, Uranus, and Neptune. Astron. Astrophys. 598, 98 (2017). https://doi.org/10.1051/0004-6361/201629140
ADS
Article
Google Scholar
C. Li, X. Chen, Simulating Non-hydrostatic atmospheres on Planets (SNAP): formulation, validation and application to the Jovian atmosphere. arXiv:e-prints arXiv:1901.02955 (2019)
C. Li, A.P. Ingersoll, Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms. Nat. Geosci. 8, 398–403 (2015). https://doi.org/10.1038/ngeo2405
ADS
Article
Google Scholar
L. Li, X. Jiang, A.P. Ingersoll, A.D. Del Genio, C.C. Porco, R.A. West, A.R. Vasavada, S.P. Ewald, B.J. Conrath, P.J. Gierasch, A.A. Simon-Miller, C.A. Nixon, R.K. Achterberg, G.S. Orton, L.N. Fletcher, K.H. Baines, Equatorial winds on Saturn and the stratospheric oscillation. Nat. Geosci. 4, 750–752 (2011). https://doi.org/10.1038/ngeo1292
ADS
Article
Google Scholar
C. Li, F.A. Oyafuso, S.T. Brown, S.K. Atreya, G. Orton, A.P. Ingersoll, M.A. Janssen, How deep is Jupiter’s Great Red Spot? in AGU Fall Meeting Abstracts (2017a)
Google Scholar
C. Li, A. Ingersoll, M. Janssen, S. Levin, S. Bolton, V. Adumitroaie, M. Allison, J. Arballo, A. Bellotti, S. Brown, S. Ewald, L. Jewell, S. Misra, G. Orton, F. Oyafuso, P. Steffes, R. Williamson, The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophys. Res. Lett. 44, 5317–5325 (2017b). https://doi.org/10.1002/2017GL073159
ADS
Article
Google Scholar
Y. Lian, A.P. Showman, Deep jets on gas-giant planets. Icarus 194, 597–615 (2008). https://doi.org/10.1016/j.icarus.2007.10.014
ADS
Article
Google Scholar
Y. Lian, A.P. Showman, Generation of equatorial jets by large-scale latent heating on the giant planets. Icarus 207, 373–393 (2010). https://doi.org/10.1016/j.icarus.2009.10.006
ADS
Article
Google Scholar
S.S. Limaye, L.A. Sromovsky, Winds of Neptune—Voyager observations of cloud motions. J. Geophys. Res. 96, 18 (1991). https://doi.org/10.1029/91JA01701
Article
Google Scholar
B. Little, C.D. Anger, A.P. Ingersoll, A.R. Vasavada, D.A. Senske, H.H. Breneman, W.J. Borucki (The Galileo SSI Team), Galileo images of lightning on Jupiter. Icarus 142, 306–323 (1999). https://doi.org/10.1006/icar.1999.6195
ADS
Article
Google Scholar
J. Liu, T. Schneider, Mechanisms of jet formation on the giant planets. J. Atmos. Sci. 67, 3652–3672 (2010). https://doi.org/10.1175/2010JAS3492.1
ADS
Article
Google Scholar
J. Liu, P.M. Goldreich, D.J. Stevenson, Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196, 653–664 (2008). https://doi.org/10.1016/j.icarus.2007.11.036
ADS
Article
Google Scholar
C. Mankovich, M.S. Marley, J.J. Fortney, N. Movshovitz, Cassini ring seismology as a probe of Saturn’s interior. I. Rigid rotation. Astrophys. J. 871(1), 1 (2019). https://doi.org/10.3847/1538-4357/aaf798
ADS
Article
Google Scholar
P.S. Marcus, X. Asay-Davis, M.H. Wong, I. De Pater, Jupiter’s red oval ba: dynamics, color, and relationship to jovian climate change. J. Heat Transf. 135(1), 011007 (2013)
Article
Google Scholar
S.T. Massie, D.M. Hunten, Conversion of para and ortho hydrogen in the Jovian planets. Icarus 49, 213–226 (1982). https://doi.org/10.1016/0019-1035(82)90073-2
ADS
Article
Google Scholar
H. Melin, L.N. Fletcher, P.T. Donnelly, T.K. Greathouse, J.H. Lacy, G.S. Orton, R.S. Giles, J.A. Sinclair, P.G.J. Irwin, Assessing the long-term variability of acetylene and ethane in the stratosphere of Jupiter. Icarus 305, 301–313 (2018). https://doi.org/10.1016/j.icarus.2017.12.041
ADS
Article
Google Scholar
C.A. Nixon, R.K. Achterberg, P.N. Romani, M. Allen, X. Zhang, N.A. Teanby, P.G.J. Irwin, F.M. Flasar, Abundances of Jupiter’s trace hydrocarbons from Voyager and Cassini. Planet. Space Sci. 58, 1667–1680 (2010). https://doi.org/10.1016/j.pss.2010.05.008
ADS
Article
Google Scholar
Y. Orsolini, C.B. Leovy, A model of large-scale instabilities in the Jovian troposphere. 1. Linear model. Icarus 106(2), 392–405 (1993). https://doi.org/10.1006/icar.1993.1180
ADS
Article
Google Scholar
G.S. Orton, L.N. Fletcher, T. Encrenaz, C. Leyrat, H.G. Roe, T. Fujiyoshi, E. Pantin, Thermal imaging of Uranus: upper-tropospheric temperatures one season after Voyager. Icarus 260, 94–102 (2015). https://doi.org/10.1016/j.icarus.2015.07.004
ADS
Article
Google Scholar
C. Palotai, T.E. Dowling, L.N. Fletcher, 3D modeling of interactions between Jupiter’s ammonia clouds and large anticyclones. Icarus 232, 141–156 (2014)
ADS
Article
Google Scholar
J. Pedlosky, Geophysical Fluid Dynamics (1982)
Book
Google Scholar
S. Pérez-Hoyos, A. Sánchez-Lavega, R.G. French, Short-term changes in the belt/zone structure of Saturn’s Southern Hemisphere (1996–2004). Astron. Astrophys. 460, 641–645 (2006). https://doi.org/10.1051/0004-6361:20065972
ADS
Article
Google Scholar
J.A. Pirraglia, Dissipationless decay of Jovian jets. Icarus 79, 196–207 (1989). https://doi.org/10.1016/0019-1035(89)90116-4
ADS
Article
Google Scholar
C.C. Porco, R.A. West, A. McEwen, A.D. Del Genio, A.P. Ingersoll, P. Thomas, S. Squyres, L. Dones, C.D. Murray, T.V. Johnson, J.A. Burns, A. Brahic, G. Neukum, J. Veverka, J.M. Barbara, T. Denk, M. Evans, J.J. Ferrier, P. Geissler, P. Helfenstein, T. Roatsch, H. Throop, M. Tiscareno, A.R. Vasavada, Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science 299, 1541–1547 (2003). https://doi.org/10.1126/science.1079462
ADS
Article
Google Scholar
C.C. Porco, E. Baker, J. Barbara, K. Beurle, A. Brahic, J.A. Burns, S. Charnoz, N. Cooper, D.D. Dawson, A.D. Del Genio, T. Denk, L. Dones, U. Dyudina, M.W. Evans, B. Giese, K. Grazier, P. Helfenstein, A.P. Ingersoll, R.A. Jacobson, T.V. Johnson, A. McEwen, C.D. Murray, G. Neukum, W.M. Owen, J. Perry, T. Roatsch, J. Spitale, S. Squyres, P. Thomas, M. Tiscareno, E. Turtle, A.R. Vasavada, J. Veverka, R. Wagner, R. West, Cassini imaging science: initial results on Saturn’s atmosphere. Science 307, 1243–1247 (2005). https://doi.org/10.1126/science.1107691
ADS
Article
Google Scholar
P.L. Read, P.J. Gierasch, B.J. Conrath, A. Simon-Miller, T. Fouchet, Y.H. Yamazaki, Mapping potential-vorticity dynamics on Jupiter. I: zonal-mean circulation from Cassini and Voyager 1 data. Q. J. R. Meteorol. Soc. 132, 1577–1603 (2006)
ADS
Article
Google Scholar
P.L. Read, T.E. Dowling, G. Schubert, Saturn’s rotation period from its atmospheric planetary-wave configuration. Nature 460(7255), 608–610 (2009a). https://doi.org/10.1038/nature08194
ADS
Article
Google Scholar
P.L. Read, B.J. Conrath, L.N. Fletcher, P.J. Gierasch, A.A. Simon-Miller, L.C. Zuchowski, Mapping potential vorticity dynamics on saturn: zonal mean circulation from Cassini and Voyager data. Planet. Space Sci. 57(14–15), 1682–1698 (2009b). https://doi.org/10.1016/j.pss.2009.03.004
ADS
Article
Google Scholar
J.H. Rogers, The Giant Planet Jupiter (Cambridge University Press, Cambridge, 1995)
Google Scholar
M.T. Roman, D. Banfield, P.J. Gierasch, Saturn’s cloud structure inferred from Cassini ISS. Icarus 225, 93–110 (2013). https://doi.org/10.1016/j.icarus.2013.03.015
ADS
Article
Google Scholar
M. Roos-Serote, S.K. Atreya, M.K. Wong, P. Drossart, On the water abundance in the atmosphere of Jupiter. Planet. Space Sci. 52, 397–414 (2004). https://doi.org/10.1016/j.pss.2003.06.007
ADS
Article
Google Scholar
C. Salyk, A.P. Ingersoll, J. Lorre, A. Vasavada, A.D. Del Genio, Interaction between eddies and mean flow in Jupiter’s atmosphere: analysis of Cassini imaging data. Icarus 185(2), 430–442 (2006)
ADS
Article
Google Scholar
A. Sánchez-Lavega, T. del Río-Gaztelurrutia, R. Hueso, J.M. Gómez-Forrellad, J.F. Sanz-Requena, J. Legarreta, E. García-Melendo, F. Colas, J. Lecacheux, L.N. Fletcher, D. Barrado y Navascués, D. Parker, T. Akutsu, T. Barry, J. Beltran, S. Buda, B. Combs, F. Carvalho, P. Casquinha, M. Delcroix, S. Ghomizadeh, C. Go, J. Hotershall, T. Ikemura, G. Jolly, A. Kazemoto, T. Kumamori, M. Lecompte, P. Maxson, F.J. Melillo, D.P. Milika, E. Morales, D. Peach, J. Phillips, J.J. Poupeau, J. Sussenbach, G. Walker, S. Walker, T. Tranter, A. Wesley, T. Wilson, K. Yunoki (International Outer Planet Watch Team), Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature 475, 71–74 (2011). https://doi.org/10.1038/nature10203
ADS
Article
Google Scholar
A. Sanchez-Lavega, G. Fischer, L.N. Fletcher, E. Garcia-Melendo, B.E. Hesman, S. Perez-Hoyos, K.M. Sayanagi, L.A. Sromovsky, in The Great Saturn Storm of 2010–2011, ed. by K.H. Baines, F.M. Flasar, N. Krupp, T.S. Stallard Cambridge Planetary Science (Cambridge University Press, New York, 2018), Chap. 13
Chapter
Google Scholar
A. Sanchez-Lavega, L.A. Sromovsky, A.P. Showman, A.D. Del Genio, R.M.B. Young, R. Hueso, E. García-Melendo, Y. Kaspi, G.S. Orton, N. Barrado-Izagirre, D.S. Choi, J.M. Barbara, in Gas Giants, ed. by B. Galperin, P.L. Read (Cambridge University Press, Cambridge, 2019), Chap. 4
Chapter
Google Scholar
T. Schneider, J. Liu, Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci. 66(3), 579 (2009). https://doi.org/10.1175/2008JAS2798.1
ADS
Article
Google Scholar
A.P. Showman, Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn. J. Atmos. Sci. 64(9), 3132 (2007). https://doi.org/10.1175/JAS4007.1
ADS
Article
Google Scholar
A.P. Showman, I. de Pater, Dynamical implications of Jupiter’s tropospheric ammonia abundance. Icarus 174, 192–204 (2005). https://doi.org/10.1016/j.icarus.2004.10.004
ADS
Article
Google Scholar
A.P. Showman, P.J. Gierasch, Y. Lian, Deep zonal winds can result from shallow driving in a giant-planet atmosphere. Icarus 182, 513–526 (2006). https://doi.org/10.1016/j.icarus.2006.01.019
ADS
Article
Google Scholar
A.P. Showman, A.P. Ingersoll, R.K. Achterberg, Y. Kaspi, in The Global Atmospheric Circulation of Saturn, ed. by K.H. Baines, F.M. Flasar, N. Krupp, T.S. Stallard Cambridge Planetary Science (Cambridge University Press, New York, 2018), Chap. 11
Chapter
Google Scholar
A.A. Simon-Miller, B.J. Conrath, P.J. Gierasch, G.S. Orton, R.K. Achterberg, F.M. Flasar, B.M. Fisher, Jupiter’s atmospheric temperatures: from Voyager IRIS to Cassini CIRS. Icarus 180, 98–112 (2006). https://doi.org/10.1016/j.icarus.2005.07.019
ADS
Article
Google Scholar
J.A. Sinclair, P.G.J. Irwin, L.N. Fletcher, T. Greathouse, S. Guerlet, J. Hurley, C. Merlet, From Voyager-IRIS to Cassini-CIRS: interannual variability in Saturn’s stratosphere? Icarus 233, 281–292 (2014). https://doi.org/10.1016/j.icarus.2014.02.009
ADS
Article
Google Scholar
B.A. Smith, L.A. Soderblom, D. Banfield, C. Barnet, A.T. Basilevsky, R.F. Beebe, K. Bollinger, J.M. Boyce, A. Brahic, G.A. Briggs, R.H. Brown, C. Chyba, S.A. Collins, T. Colvin, A.F. Cook II, D. Crisp, S.K. Croft, D. Cruikshank, J.N. Cuzzi, G.E. Danielson, M.E. Davies, E. De Jong, L. Dones, D. Godfrey, J. Goguen, I. Grenier, V.R. Haemmerle, H. Hammel, C.J. Hansen, C.P. Helfenstein, C. Howell, G.E. Hunt, A.P. Ingersoll, T.V. Johnson, J. Kargel, R. Kirk, D.I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. Morrison, T. Owen, W. Owen, J.B. Pollack, C.C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E.M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L.A. Sromovsky, C. Stoker, R.G. Strom, V.E. Suomi, S.P. Synott, R.J. Terrile, P. Thomas, W.R. Thompson, A. Verbiscer, J. Veverka, Voyager 2 at Neptune—imaging science results. Science 246, 1422–1449 (1989). https://doi.org/10.1126/science.246.4936.1422
ADS
Article
Google Scholar
A. Spiga, S. Guerlet, E. Millour, M. Indurain, Y. Meurdesoif, S. Cabanes, T. Dubos, J. Leconte, A.R. Boissinot, S. Lebonnois, M. Sylvestre, T. Fouchet, Global climate modeling of Saturn’s atmosphere. Part II: multi-annual high-resolution dynamical simulations. Icarus 335, 113377 (2020). https://doi.org/10.1016/j.icarus.2019.07.011
Article
Google Scholar
L.A. Sromovsky, S.S. Limaye, P.M. Fry, Dynamics of Neptune’s major cloud features. Icarus 105, 110–141 (1993). https://doi.org/10.1006/icar.1993.1114
ADS
Article
Google Scholar
L.A. Sromovsky, P.M. Fry, T.E. Dowling, K.H. Baines, S.S. Limaye, Coordinated 1996 HST and IRTF imaging of Neptune and Triton. III. Neptune’s atmospheric circulation and cloud structure. Icarus 149, 459–488 (2001). https://doi.org/10.1006/icar.2000.6564
ADS
Article
Google Scholar
L.A. Sromovsky, P.M. Fry, H.B. Hammel, W.M. Ahue, I. de Pater, K.A. Rages, M.R. Showalter, M.A. van Dam, Uranus at equinox: cloud morphology and dynamics. Icarus 203, 265–286 (2009). https://doi.org/10.1016/j.icarus.2009.04.015
ADS
Article
Google Scholar
L.A. Sromovsky, E. Karkoschka, P.M. Fry, H.B. Hammel, I. de Pater, K. Rages, Methane depletion in both polar regions of Uranus inferred from HST/STIS and Keck/NIRC2 observations. Icarus 238, 137–155 (2014). https://doi.org/10.1016/j.icarus.2014.05.016
ADS
Article
Google Scholar
L.A. Sromovsky, I. de Pater, P.M. Fry, H.B. Hammel, P. Marcus, High S/N Keck and Gemini AO imaging of Uranus during 2012–2014: new cloud patterns, increasing activity, and improved wind measurements. Icarus 258, 192–223 (2015). https://doi.org/10.1016/j.icarus.2015.05.029
ADS
Article
Google Scholar
P.H. Stone, The meteorology of the Jovian atmosphere, in IAU Colloq. 30: Jupiter: Studies of the Interior, Atmosphere, Magnetosphere and Satellites, ed. by T. Gehrels, S. Matthews (1976), pp. 586–618
Google Scholar
A. Studwell, L. Li, X. Jiang, K.H. Baines, P.M. Fry, T.W. Momary, U.A. Dyudina, Saturn’s global zonal winds explored by Cassini/VIMS 5-μm images. Geophys. Res. Lett. 45, 6823–6831 (2018). https://doi.org/10.1029/2018GL078139
ADS
Article
Google Scholar
K. Sugiyama, K. Nakajima, M. Odaka, K. Kuramoto, Y.-Y. Hayashi, Numerical simulations of Jupiter’s moist convection layer: structure and dynamics in statistically steady states. Icarus 229, 71–91 (2014). https://doi.org/10.1016/j.icarus.2013.10.016
ADS
Article
Google Scholar
F.W. Taylor, S.K. Atreya, T. Encrenaz, D.M. Hunten, P.G.J. Irwin, T.C. Owen, in The Composition of the Atmosphere of Jupiter, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004), pp. 59–78
Google Scholar
S.I. Thomson, M.E. McIntyre, Jupiter’s unearthly jets: a new turbulent model exhibiting statistical steadiness without large-scale dissipation. J. Atmos. Sci. 73, 1119–1141 (2016). https://doi.org/10.1175/JAS-D-14-0370.1
ADS
Article
Google Scholar
J. Tollefson, I. de Pater, P.S. Marcus, S. Luszcz-Cook, L.A. Sromovsky, P.M. Fry, L.N. Fletcher, M.H. Wong, Vertical wind shear in Neptune’s upper atmosphere explained with a modified thermal wind equation. Icarus 311, 317–339 (2018). https://doi.org/10.1016/j.icarus.2018.04.009
ADS
Article
Google Scholar
G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics (2006), p. 770. https://doi.org/10.2277/0521849691
Book
Google Scholar
A.R. Vasavada, A.P. Showman, Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68, 1935–1996 (2005). https://doi.org/10.1088/0034-4885/68/8/R06
ADS
MathSciNet
Article
Google Scholar
A.R. Vasavada, S.M. Hörst, M.R. Kennedy, A.P. Ingersoll, C.C. Porco, A.D. Del Genio, R.A. West, Cassini imaging of Saturn: southern hemisphere winds and vortices. J. Geophys. Res., Planets 111(E10), 5004 (2006). https://doi.org/10.1029/2005JE002563
ADS
Article
Google Scholar
Y.H. Yamazaki, P.L. Read, D.R. Skeet, Hadley circulations and Kelvin wave-driven equatorial jets in the atmospheres of Jupiter and Saturn. Planet. Space Sci. 53, 508–525 (2005). https://doi.org/10.1016/j.pss.2004.03.009
ADS
Article
Google Scholar
R.M.B. Young, P.L. Read, Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer. Nat. Phys. 13(11), 1135–1140 (2017). https://doi.org/10.1038/nphys4227
Article
Google Scholar
R.M.B. Young, P.L. Read, Y. Wang, Simulating Jupiter’s weather layer. Part I: jet spin-up in a dry atmosphere. Icarus (2018). https://doi.org/10.1016/j.icarus.2018.12.005
Article
Google Scholar
L.C. Zuchowski, Y.H. Yamazaki, P.L. Read, Modeling Jupiter’s cloud bands and decks. 1. Jet scale meridional circulations. Icarus 200, 548–562 (2009a). https://doi.org/10.1016/j.icarus.2008.11.024
ADS
Article
Google Scholar
L.C. Zuchowski, Y.H. Yamazaki, P.L. Read, Modeling Jupiter’s cloud bands and decks. 2. Distribution and motion of condensates. Icarus 200(2), 563–573 (2009b). https://doi.org/10.1016/j.icarus.2008.11.015
ADS
Article
Google Scholar