Skip to main content

Saturn Atmospheric Structure and Dynamics

  • Chapter
Saturn from Cassini-Huygens

Abstract

Saturn inhabits a dynamical regime of rapidly rotating, internally heated atmospheres similar to Jupiter. Zonal winds have remained fairly steady since the time of Voyager except in the equatorial zone and slightly stronger winds occur at deeper levels. Eddies supply energy to the jets at a rate somewhat less than on Jupiter and mix potential vorticity near westward jets. Convective clouds exist preferentially in cyclonic shear regions as on Jupiter but also near jets, including major outbreaks near 35°S associated with Saturn electrostatic discharges, and in sporadic giant equatorial storms perhaps generated from frequent events at depth. The implied meridional circulation at and below the visible cloud tops consists of upwelling (downwelling) at cyclonic (anti-cyclonic) shear latitudes. Thermal winds decay upward above the clouds, implying a reversal of the circulation there. Warm-core vortices with associated cyclonic circulations exist at both poles, including surrounding thick high clouds at the south pole. Disequilibrium gas concentrations in the tropical upper troposphere imply rising motion there. The radiative-convective boundary and tropopause occur at higher pressure in the southern (summer) hemisphere due to greater penetration of solar heating there. A temperature “knee” of warm air below the tropopause, perhaps due to haze heating, is stronger in the summer hemisphere as well. Saturn's south polar stratosphere is warmer than predicted by radiative models and enhanced in ethane, suggesting subsidence-driven adiabatic warming there. Recent modeling advances suggest that shallow weather layer theories of jet pumping may be viable if water condensation is the source of energy input driving the flow, and that deep convective cylinder models with a sufficiently large tangent cylinder radius can reproduce observed flow features as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Because Showman et al. (2006) and Lian and Showman (2008) used a shallow-atmosphere model, the jets penetrated downward vertically, but in reality these jets would penetrate downward along cylinders parallel to the rotation axis.

  2. 2.

    The jets, however, are large scale and should still exhibit a relatively columnar structure, since the Taylor-Proudman theorem applies to a geostrophically balanced, barotropic fluid regardless of whether the density varies with radius.

References

  • Acarretta, J.R., Sánchez-Lavega, A.: Vertical cloud structure in Saturn's 1990 equatorial storm. Icarus 137, 24–33 (1999).

    Article  ADS  Google Scholar 

  • Achterberg, R.K., Flasar, F.M.: Planetary-scale thermal waves in Saturn's upper troposphere. Icarus 119, 350–369 (1996).

    Article  ADS  Google Scholar 

  • Aguiar, A.C.B., et al.: A laboratory model of Saturn's north polar hexagon. Icarus, submitted (2009)

    Google Scholar 

  • Allison, M.: A similarity model for the windy jovian thermocline. Planet. Space Sci. 48, 753–774 (2000).

    Article  ADS  Google Scholar 

  • Allison, M., Stone, P.H.: Saturn meteorology: A diagnostic assessment of thin-layer configurations for the zonal flow. Icarus 54, 296–308 (1983).

    Article  ADS  Google Scholar 

  • Allison, M., Godfrey, D.A., Beebe, R.F.: A wave dynamical interpretation of Saturn's polar hexagon. Science 247, 1061–1063 (1990).

    Article  ADS  Google Scholar 

  • Allison, M., Del Genio, A.D., Zhou, W.: Richardson number constraints for the Jupiter and outer planet wind regime. Geophys. Res. Lett. 22, 2957–2960 (1995).

    Article  ADS  Google Scholar 

  • Anderson, J.D., Schubert, G.: Saturn's gravitational field, internal rotation, and interior structure, Science 317, 1384–1387 (2007).

    Article  ADS  Google Scholar 

  • Andrews, D. G., Holton, J. R., Leovy, C. B.: Middle Atmosphere Dynamics. Academic Press, New York (1987).

    Google Scholar 

  • Arnol'd, V.I.: On an a priori estimate in the theory of hydrodynamic stability. Am. Math. Soc. Transl. Ser. 279, 267–269 (1966).

    Google Scholar 

  • Atkinson, D.H., Pollack, J.B., Seiff, A.: The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter. J. Geophys. Res. 103, 22,911–22,928 (1998).

    Article  ADS  Google Scholar 

  • Atreya, S.K.: Composition, clouds, and origin of Jupiter's atmosphere — A case for deep multiprobes into giant planets. In Wilson, A. (ed.), Proceeding of the International Workshop ‘Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science’, pp. 57– 62, ESA SP-544, Noordwijk, Netherlands (2003).

    Google Scholar 

  • Aurnou, J.M., Olson, P.L.: Strong zonal winds from thermal convection in a rotating spherical shell. Geophys. Res. Lett. 28, 2557–2559 (2001).

    Article  ADS  Google Scholar 

  • Aurnou, J.M., Heimpel, M.H.: Zonal jets in rotating convection with mixed mechanical boundary conditions. Icarus 169, 492–498 (2004).

    Article  ADS  Google Scholar 

  • Bagenal, F.: A new spin on Saturn's rotation. Science 316, 380–381 (2007).

    Article  Google Scholar 

  • Baines, K.H., et al.: The atmospheres of Saturn and Titan in the near-infrared: First results of Cassini/VIMS. Earth, Moon, Plan. 96, 119– 147 (2005).

    Article  ADS  Google Scholar 

  • Baines, K.H., et al.: To the depths of Venus: Exploring the deep atmosphere and surface of our sister world with Venus Express. Planet. Space Sci. 54, 1263–1278 (2006).

    Article  ADS  Google Scholar 

  • Baines, K.H., et al.: Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS. Planet. Space Sci., in press (2009a).

    Google Scholar 

  • Baines, K.H., et al.: Storm clouds on Saturn: Lightning-induced chemistry and associated materials consistent with Cassini/VIMS spectra. Planet. Space Sci., in press (2009b).

    Google Scholar 

  • Baines, K.H., et al.: The deep clouds of Saturn: Morphology, spatial distribution, and dynamical implications as revealed by Cassini/VIMS. Icarus, submitted (2009c).

    Google Scholar 

  • Baldwin, M.P., et al.: The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).

    Article  ADS  Google Scholar 

  • Barnet, C.D., Beebe, R.F., Conrath, B.J: A seasonal radiative-dynamic model of Saturn's troposphere. Icarus 98, 94–107 (1992).

    Article  ADS  Google Scholar 

  • Bastin, M.E., Read, P.L.: Experiments on the structure of baroclinic waves and zonal jets in an internally heated rotating cylinder of fluid. Phys. Fluids 10, 374–389 (1998).

    Article  ADS  Google Scholar 

  • Beebe, R.F., et al.: The onset and growth of the 1990 equatorial disturbance on Saturn. Icarus 95, 163–17 (1992).

    Article  ADS  Google Scholar 

  • Bézard, B., Gautier, D., Conrath, B: A seasonal model of the Satur-nian upper troposphere: Comparison with Voyager infrared measurements. Icarus 60, 274–288 (1984).

    Article  ADS  Google Scholar 

  • Bézard, B., Gautier, D.: A seasonal climate model of the atmospheres of the giant planets at the Voyager encounter time. Icarus 61, 296–310 (1985).

    Article  ADS  Google Scholar 

  • Brown, R.H., et al.: The Cassini visual and infrared mapping spectrometer (VIMS) investigation. Space Sci. Rev. 115, 111–168 (2004).

    Article  ADS  Google Scholar 

  • Busse, F.H.: Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids 14, 1301–1314 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  • Caldwell, J., et al.: The drift of Saturn's north polar spot observed by the Hubble Space Telescope. Science 260, 326–329 (1993).

    Article  ADS  Google Scholar 

  • Carlson, B.E., Rossow, W.B., Orton, G.S.: Cloud microphysics of the giant planets. J. Atmos. Sci. 45, 2066–2081 (1988).

    Article  ADS  Google Scholar 

  • Cess, R.D., Caldwell, J.: A Saturnian stratospheric seasonal climate model. Icarus 38, 349–35, (1979).

    Article  ADS  Google Scholar 

  • Charney, J.G.: Geostrophic turbulence. J. Atmos. Sci. 28, 1087–1095 (1971).

    Article  ADS  Google Scholar 

  • Charney, J. G., Drazin, P. G.: Propagation of planetary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res. 66, 83–109 (1961).

    Article  ADS  Google Scholar 

  • Cho, J.Y.-K., Polvani, L.M.: The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids 8, 1531–1552 (1996).

    Article  MATH  ADS  Google Scholar 

  • Choi, D.S., Showman, A.P., Brown, R.H.: Cloud features and zonal wind measurements of Saturn's atmosphere as observed by Cassini/VIMS. J. Geophys. Res. 114, E04007, doi:10.1029/ 2008JE003254 (2009).

    Article  Google Scholar 

  • Christensen, U.R.: Zonal flow driven by deep convection in the major planets. Geophys. Res. Lett. 28, 2553–2556 (2001).

    Article  ADS  Google Scholar 

  • Christensen, U.R.: Zonal flow driven by strongly supercritical convection in rotating spherical shells. J. Fluid Mech. 470, 115–133 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Condie, S. A., Rhines, P. B.: A convective model for the zonal jets in the atmospheres of Jupiter and Saturn. Nature 367, 711–713 (1994).

    Article  ADS  Google Scholar 

  • Conrath, B.J., Gierasch, P.J.: Global variation of the para hydrogen fraction in Jupiter's atmosphere and implications for dynamics on the outer planets. Icarus 57, 184–204 (1984).

    Article  ADS  Google Scholar 

  • Conrath, B.J., Pirraglia, J.A.: Thermal structure of Saturn from Voyager infrared measurements: Implications for atmospheric dynamics. Icarus 53, 286–292 (1983).

    Article  ADS  Google Scholar 

  • Conrath, B.J., Gierasch, P.J., Leroy, S.S.: Temperature and circulation in the stratosphere of the outer planets. Icarus 83, 255–281 (1990).

    Article  ADS  Google Scholar 

  • Conrath, B.J., Gierasch, P.J., Ustinov, E.A.: Thermal structure and para hydrogen fraction on the outer planets from Voyager IRIS measurements. Icarus 135, 501–517 (1998).

    Article  ADS  Google Scholar 

  • Del Genio, A.D., McGrattan, K.B.: Moist convection and the vertical structure and water abundance of Jupiter's atmosphere. Icarus 84, 29–53 (1990).

    Article  ADS  Google Scholar 

  • Del Genio, A.D., et al.: Saturn eddy momentum fluxes and convection: First estimates from Cassini images, Icarus 189, 479–492 (2007a).

    Article  ADS  Google Scholar 

  • Del Genio, A.D., Yao, M.-S., Jonas, J.: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett. 34, L16703, doi:10.1029/2007GL030525 (2007b).

    Article  ADS  Google Scholar 

  • Derbyshire, S.H., et al.: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc. 130, 3055–3079 (2004).

    Article  ADS  Google Scholar 

  • Desch, M.D., Kaiser, M.L.: Voyager measurement of the rotation period of Saturn's magnetic field. Geophys. Res. Lett. 8, 253–256 (1981).

    Article  ADS  Google Scholar 

  • Dowling, T. E.: Dynamics of Jovian atmospheres, Ann. Rev. Fluid Mech., 27, 293–334 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  • Dowling, T. E., Ingersoll, A.P.: Potential vorticity and layer thickness variations in the flow around Jupiter's Great Red Spot and White Oval BC. J. Atmos. Sci. 45, 1380–1396 (1988).

    Article  ADS  Google Scholar 

  • Dowling, T. E., Ingersoll, A.P.: Jupiter's Great Red Spot as a shallow water system. J. Atmos. Sci. 46, 3256–3278 (1989).

    Article  ADS  Google Scholar 

  • Drossart, P.D.: Scientific goals for the observation of Venus by VIRTIS on ESA/Venus Express mission. Planet. Space Sci. 55, 1653–1672 (2007).

    Article  ADS  Google Scholar 

  • Dunkerton, T.: On the mean meridional mass motions of the stratosphere and mesosphere. J. Atmos. Sci. 35, 2325–2333 (1978).

    Article  ADS  Google Scholar 

  • Dyudina, U.A., et al.: Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006. Icarus 190, 545–555 (2007).

    Article  ADS  Google Scholar 

  • Dyudina, U.A., et al.: Dynamics of Saturn's south polar vortex. Science 319, 1081 (2008).

    Article  Google Scholar 

  • Dyudina, U.A., et al.: Saturn's south polar vortex compared to other large vortices in the solar system. Icarus 202, 240–248 (2009).

    Article  ADS  Google Scholar 

  • Elachi, C., et al.: RADAR: The Cassini Titan radar mapper. Space Sci. Rev. 115, 71–110 (2004).

    Article  ADS  Google Scholar 

  • Eliassen, A., Palm, E.: On the transfer of energy in stationary mountain waves, Geophys. Publ. 22(3), 1–23 (1961).

    MathSciNet  Google Scholar 

  • Emanuel, K.: Tropical cyclones. Annu. Rev. Earth Planet. Sci. 31, 75– 104 (2003).

    Article  ADS  Google Scholar 

  • Evonuk, M., Glatzmaier, G.A.: A 2D study of the effects of the size of a solid core on the equatorial flow in giant planets. Icarus 181, 458–464 (2006).

    Article  ADS  Google Scholar 

  • Evonuk, M., Glatzmaier, G.A.: The effects of rotation rate on deep convection in giant planets with small solid cores. Planet. Space Sci. 55, 407–412 (2007).

    Article  ADS  Google Scholar 

  • Evonuk, M.: The role of density stratification in generating zonal flow structures in a rotating fluid. Astrophys. J. 673, 1154–1159 (2008).

    Article  ADS  Google Scholar 

  • Fischer, G., et al.: Saturn lightning recorded by Cassini/RPWS in 2004. Icarus 183, 135–152 (2006).

    Article  ADS  Google Scholar 

  • Fischer, G., et al.: Analysis of a giant lightning storm on Saturn. Icarus 190, 528–544 (2007).

    Article  ADS  Google Scholar 

  • Flasar, F.M., et al.: An intense stratospheric jet on Jupiter. Nature 427, 132–135 (2004a).

    Article  ADS  Google Scholar 

  • Flasar, F.M., et al.: Exploring the Saturn system in the thermal infrared: The composite infrared spectrometer. Space Sci. Rev. 115, 169–297 (2004b).

    Article  ADS  Google Scholar 

  • Flasar, F.M., et al.: Temperatures, winds and composition in the Satur-nian system. Science 307, 1247–1251 (2005).

    Article  ADS  Google Scholar 

  • Fletcher, L.N., et al.: The meridional phosphine distribution in Saturn's upper troposphere from Cassini/CIRS observations. Icarus 188, 72– 88 (2007a).

    Article  ADS  Google Scholar 

  • Fletcher, L.N., et al.: Characterising Saturn's vertical temperature structure from Cassini/CIRS. Icarus 189, 457–478 (2007b).

    Article  ADS  Google Scholar 

  • Fletcher, L.N., et al.: Saturn's atmosphere: Structure and composition from Cassini/CIRS. PhD dissertation, University of Oxford, UK (2007c).

    Google Scholar 

  • Fletcher, L.N., et al.: Temperature and composition of Saturn's polar hot spots and hexagon. Science 319, 79–81 (2008).

    Article  ADS  Google Scholar 

  • Fouchet, T., et al.: An equatorial oscillation in Saturn's middle atmosphere. Nature 453, 200–202 (2008).

    Article  ADS  Google Scholar 

  • Friedson, A.J.: New observations and modeling of a QBO-like oscillation in Jupiter's stratosphere. Icarus 137, 34–55 (1999).

    Article  ADS  Google Scholar 

  • Frierson, D.M.W.: Midlatitude static stability in simple and comprehensive general circulation models. J. Atmos. Sci. 65, 1049–1062 (2008).

    Article  ADS  Google Scholar 

  • Fruh, W.-G., Read, P. L.: Experiments on a barotropic rotating shear layer. Part 1. Instability and steady vortices, J. Fluid Mech. 383, 143–173 (1999).

    Google Scholar 

  • Galopeau, P.H.M., Lecacheux, A.: Variations of Saturn's radio period measured at kilometer wavelengths. J. Geophys. Res. 105, 13,089– 13,102 (2000).

    Article  ADS  Google Scholar 

  • Galperin, B., et al.: Anisotropic turbulence and zonal jets in rotating flows with a β-effect. Nonlin. Processes Geophys. 13, 83–98 (2006).

    Article  ADS  Google Scholar 

  • Galperin, B., Sukoriansky, S., Dikovskaya, N.: Zonostrophic turbulence. Physica Scripta T132 014034, doi:10.1088/0031– 8949/2008/T132/014034n(2008).

    Article  ADS  Google Scholar 

  • García-Melendo, E., Sánchez-Lavega, A., Hueso, R.: Numerical models of Saturn's long-lived anticyclones, Icarus 191, 665–677 (2007).

    Article  ADS  Google Scholar 

  • García-Melendo, E., et al.: Vertical shears in Saturn's eastward jets at cloud level. Icarus 201, 818–820 (2009).

    Article  ADS  Google Scholar 

  • Gezari, D.Y., et al.: New features in Saturn's atmosphere revealed by high-resolution thermal images. Nature 342, 777–780 (1989).

    Article  ADS  Google Scholar 

  • Gierasch, P.J.: Jovian meteorology: Large-scale moist convection. Icarus 29, 445–454 (1976).

    Article  ADS  Google Scholar 

  • Gierasch, P.J.: Radiative-convective latitudinal gradients for Jupiter and Saturn models with a radiative zone. Icarus 142, 148–154 (1999).

    Article  ADS  Google Scholar 

  • Gierasch, P.J., Conrath, B.J., Magalhães, J.A.: Zonal mean properties of Jupiter's upper troposphere from Voyager infrared observations. Icarus 67, 456–483 (1986).

    Article  ADS  Google Scholar 

  • Gierasch, P.J., et al.: Observation of moist convection in Jupiter's atmosphere. Nature 403, 628–630 (2000).

    Article  ADS  Google Scholar 

  • Gierasch, P.J., Conrath, B.J., Read, P.L.: Nonconservation of Ertel potential vorticity in hydrogen atmospheres. J. Atmos. Sci. 61, 1953– 1965 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  • Gillet, F. C., Orton, G. S.: Center-to-limb observations of Saturn in the thermal infrared. Astrophys. J. 195, L47–L49 (1975).

    Article  ADS  Google Scholar 

  • Glatzmaier, G.A.: A note on “Constraints on deep-seated zonal winds inside Jupiter and Saturn.” Icarus 196, 665–666 (2008).

    Google Scholar 

  • Glatzmaier, G.A., Evonuk, M., Rogers, T.M.: Differential rotation in giant planets maintained by density-stratified turbulent convection. Geophys. Astrophys. Fluid Dyn 103, 31–51 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  • Godfrey, D.A.: A hexagonal feature around Saturn's north pole. Icarus 76, 335–356 (1988).

    Article  ADS  Google Scholar 

  • Godfrey, D.A.: The rotation period of Saturn's polar hexagon. Science 247, 1206–1207 (1990).

    Article  ADS  Google Scholar 

  • Godfrey, D.A., Moore, V.: The Saturnian ribbon feature — A baroclini-cally unstable model. Icarus 68, 313–343 (1986).

    Article  ADS  Google Scholar 

  • Greathouse, T.K., et al.: Meridional variations of temperature, C2H2 and C2H6 abundances in Saturn's stratosphere at southern summer solstice. Icarus 177, 18–31 (2005).

    Article  ADS  Google Scholar 

  • Grote, E., Busse, F.H., Tilgner, A.: Regular and chaotic spherical dynamos. Phys. Earth Planet Int. 117, 259–272 (2000).

    Article  ADS  Google Scholar 

  • Guillot, T.: Interiors of giant planets inside and outside the solar system. Science 286, 72–77 (1999).

    Article  ADS  Google Scholar 

  • Guillot, T.: The interiors of giant planets: Models and outstanding questions. Ann. Rev. Earth Planet. Sci. 33, 493–530 (2005).

    Article  ADS  Google Scholar 

  • Guillot, T., et al.: Are the giant planets fully convective? Icarus 112, 354–367 (1994).

    Article  ADS  Google Scholar 

  • Gurnett, D.A., et al.: Radio and plasma wave observations at Saturn from Cassini's approach and first orbit. Science 307, 1255–1259 (2005).

    Article  ADS  Google Scholar 

  • Gurnett, D.A., et al.: The variable rotation period of the inner region of Saturn's plasma disk. Science 316, 442–445 (2007).

    Article  ADS  Google Scholar 

  • Hamilton, K.: Dynamics of the tropical middle atmosphere: A tutorial review. Atmos.-Ocean 36, 319–354 (1998).

    Google Scholar 

  • Hanel, R., et al.: Infrared observations of the Saturnian system from Voyager 1. Science 212, 192–200 (1981).

    Article  ADS  Google Scholar 

  • Hanel, R.A., et al.: Albedo, internal heat flux, and energy balance of Saturn. Icarus 53, 262–285 (1983).

    Article  ADS  Google Scholar 

  • Hartmann, D. L.: The general circulation of the atmosphere and its variability. J. Meteor. Soc. Japan 85B, 123–143 (2007).

    Article  Google Scholar 

  • Heimpel, M., Aurnou, J., Wicht, J.: Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193– 196 (2005).

    Article  ADS  Google Scholar 

  • Heimpel, M., Aurnou, J.: Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn. Icarus 187, 540–557 (2007).

    Article  ADS  Google Scholar 

  • Held, I.M., Andrews, D.G.: On the direction of the eddy momentum flux in baroclinic instability. J. Atmos. Sci. 40, 2220–2231 (1983).

    Article  ADS  Google Scholar 

  • Hesman, B.E., et al.: Saturn's latitudinal C2H2 and C2H6 abundance profiles from Cassini/CIRS and ground-based observations. Icarus 202, 249–259 (2009).

    Article  ADS  Google Scholar 

  • Hess, S.L., Panofsky, H.A.: The atmospheres of the other planets. In Malone, T.F. (ed.), Compendium of Meteorology, pp. 391–400, Amer. Meteor. Soc., Boston (1951).

    Google Scholar 

  • Hide, R., Lewis, S.R., Read, P.L.: Sloping convection: A paradigm for large-scale waves and eddies in planetary atmospheres? Chaos 4, 135–162 (1994).

    Article  ADS  Google Scholar 

  • Howard, L. N., Drazln, P. G.: On instability of parallel flow of inviscid fluid in a rotating system with variable Coriolis parameter. J. Math. Phys. N. 43, 83–99 (1964).

    Google Scholar 

  • Howett, C.J.A., et al.: Meridional variations in stratospheric acetylene and ethane in the southern hemisphere of the saturnian atmosphere as determined from Cassini/CIRS measurements. Icarus 190, 556– 572 (2007).

    Article  ADS  Google Scholar 

  • Huang, H.-P., Galperin, B., Sukoriansky, S.: Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Phys. Fluids 13, 225–240 (2001).

    Article  ADS  Google Scholar 

  • Hueso, R., Sánchez-Lavega, A.: A three-dimensional model of moist convection for the giant planets. II. Saturn's water and ammonia moist convective storms. Icarus 172, 255–271 (2004).

    Google Scholar 

  • Hunt, G.E., et al.: Dynamical features in the northern hemisphere of Saturn from Voyager 1 images. Nature 297, 132–134 (1982).

    Article  ADS  Google Scholar 

  • Iacono, R., Struglia, M.V., Roncji, C.: Spontaneous formation of equatorial jets in freely decaying shallow water turbulence. Phys. Fluids 11, 1272–1274 (1999).

    Article  MATH  ADS  Google Scholar 

  • Ingersoll, A.P.: Pioneer 10 and 11 observations and the dynamics of Jupiter's atmosphere. Icarus 29, 245–253 (1976).

    Article  ADS  Google Scholar 

  • Ingersoll, A.P., Cuzzi, J.N.: Dynamics of Jupiter's cloud bands. J. At-mos. Sci. 26, 981–985 (1969).

    Article  ADS  Google Scholar 

  • Ingersoll, A.P., et al.: Interaction of eddies and zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res. 86, 8733– 8743 (1981).

    Article  ADS  Google Scholar 

  • Ingersoll, A.P., Pollard, D.: Motion in the interiors and atmospheres of Jupiter and Saturn: Scale analysis, anelastic equations, barotropic-stability criterion. Icarus 52, 62–80 (1982).

    Article  ADS  Google Scholar 

  • Ingersoll, A.P., Porco, C.C.: Solar heating and internal heat flow on Jupiter. Icarus 35, 27–43 (1978).

    Article  ADS  Google Scholar 

  • Ingersoll, A.P., et al.: Structure and dynamics of Saturn's atmosphere. In Gehrels, T., Matthews, M.S. (eds.), Saturn, pp. 195–238. Univ. Arizona Press, Tucson (1984).

    Google Scholar 

  • Ingersoll, A.P., et al.: Moist convection as the energy source for the large-scale motions in Jupiter's atmosphere. Nature 403, 630–631 (2000).

    Article  ADS  Google Scholar 

  • Ingersoll, A.P., et al.: Dynamics of Jupiter's atmosphere. In Bagenal, F., e t a l. (eds.), Jupiter: The Planet, Satellites, and Magnetosphere, pp. 105–128. Cambridge Univ. Press, New York (2004).

    Google Scholar 

  • Janssen, M.A., Allison, M., Lorenz, R.D.: Saturn's thermal emission at 2-cm wavelength and implications for atmospheric composition and dynamics. Poster, Saturn After Cassini-Huygens Symposium, London, UK (2008).

    Google Scholar 

  • Kaiser, M.L., Connerney, J.E.P., Desch, M.D.: Atmospheric storm explanation of saturnian electrostatic discharges. Nature 303, 50–53 (1983).

    Article  ADS  Google Scholar 

  • Karkoschka, E., Tomasko, M.G.: Saturn's upper troposphere 1986– 1989. Icarus 97, 161–181 (1992).

    Article  ADS  Google Scholar 

  • Karkoschka, E., Tomasko, M.: Saturn's vertical and latitudinal cloud structure 1991–2004 from HST imaging in 30 filters. Icarus 179, 195–221 (2005).

    Article  ADS  Google Scholar 

  • Kaspi, Y., Flierl, G.R.: Formation of jets by baroclinic instability on gas planet atmospheres. J. Atmos. Sci. 64, 3177–3194 (2007).

    Article  ADS  Google Scholar 

  • Kirk, R.L., Stevenson, D.J.: Hydromagnetic implications of zonal flows in the giant planets. Astrophys. J. 316, 836–846 (1987).

    Article  ADS  Google Scholar 

  • Kurth, W.S., et al.: A Saturnian longitude system based on a variable kilometric radiation period. Geophys. Res. Lett. 34, L02201, doi:10.1029/2006GL028336 (2007).

    Article  Google Scholar 

  • Kurth, W.S., et al.: An update to a Saturnian longitude system based on kilometric radio emissions. J. Geophys. Res. 113, A05222, doi:10.1029/2007JA012861 (2008).

    Article  Google Scholar 

  • Leovy, C.B., Friedson, A.J., Orton, G.S.: The quasiquadrennial oscillation of Jupiter's equatorial stratosphere. Nature 354, 380–382 (1991).

    Article  ADS  Google Scholar 

  • Li, L., Ingersoll, A.P., Huang, X.: Interaction of moist convection with zonal jets on Jupiter and Saturn. Icarus 180, 113–123 (2006).

    Article  ADS  Google Scholar 

  • Li, X., Read, P.L.: A mechanistic model of the quasi-quadrennial oscillation in Jupiter's stratosphere. Planet. Space Sci. 48, 637–669 (2000).

    Article  ADS  Google Scholar 

  • Lian, Y., Showman, A.P.: Deep jets on gas giant planets. Icarus 194, 597–615 (2008).

    Article  ADS  Google Scholar 

  • Lian, Y., Showman, A.P.: Generation of zonal jets by moist convection on the giant planets. Icarus, submitted (2009).

    Google Scholar 

  • Lindal, G.F., Sweetnam, D.N., Eshleman, V.R.: The atmosphere of Saturn: an analysis of the Voyager radio occultation measurements. Astron. J. 90, 1136–1146 (1985).

    Article  ADS  Google Scholar 

  • Lindzen, R.S., Farrell, B., Tung, K.-K.: The concept of wave overreflec-tion and its application to barotropic instability. J. Atmos. Sci. 37, 44–63 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  • Liu, J, Goldreich, P.M., Stevenson, D.J.: Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196, 653–664 (2008).

    Article  ADS  Google Scholar 

  • Magalhaes, J.A., et al.: Slowly moving thermal features on Jupiter. Icarus 88, 39–72 (1990).

    Article  ADS  Google Scholar 

  • Massie, S.T., Hunten, D.M.: Conversion of para and ortho hydrogen in the Jovian planets. Icarus 49, 213–226 (1982).

    Article  ADS  Google Scholar 

  • Mitchell, J. L., Maxworthy, T.: Large-scale turbulence in the Jovian atmosphere. In Ghil, M., Benzi, R., Parisi, G. (eds.), Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, pp. 226–240, Societa Italiana di Fisica, Bologna, Italy (1985).

    Google Scholar 

  • Moses, J. I., Greathouse, T.K.: Latitudinal and seasonal models of stratospheric photochemistry on Saturn: Comparison with infrared data from IRTF/TEXES. J. Geophys. Res. 110, E09007, doi:10.1029/2005JE002450 (2005).

    Article  Google Scholar 

  • Moses, J.I., et al.: Meridional distribution of hydrocarbons on Saturn: Implications for stratospheric transport. Workshop on Planetary Atmospheres, Paper #9061, Greenbelt, Maryland (2007).

    Google Scholar 

  • Nellis, W.J., et al.: Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures. Phys. Rev. Lett. 68, 2937–2940 (1992).

    Article  ADS  Google Scholar 

  • Nellis, W.J., Weir, S.T., Mitchell, A.C.: Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. B 59, 3434– 3449 (1999).

    Article  ADS  Google Scholar 

  • Niino, H, Misawa, N.: An experimental and theoretical study of barotropic instability, J. Atmos. Sci. 41, 1992–2011 (1984).

    Article  ADS  Google Scholar 

  • Okuno, A., Masuda, A.: Effect of horizontal turbulence on the geostrophic turbulence on a beta-plane: Suppression of the Rhines effect. Phys. Fluids 15, 56–65 (2003).

    Article  ADS  Google Scholar 

  • Ollivier, J.L., et al.: Seasonal effects in the thermal structure of Saturn's stratosphere from infrared imaging at 10 microns. Astron. Astro-phys. 356, 347–356 (2000).

    ADS  Google Scholar 

  • Orsolini, Y., Leovy, C.B.: A model of large-scale instabilities in the Jovian troposphere. 1. Linear model. Icarus 106, 392–405 (1993a).

    Article  ADS  Google Scholar 

  • Orsolini, Y., Leovy, C.B.: A model of large-scale instabilities in the Jovian troposphere. 2. Quasi-linear model. Icarus 106, 406–418 (1993b).

    Article  ADS  Google Scholar 

  • Orton, G. S., Ingersoll, A. P.: Saturn's atmospheric temperature structure and heat budget. J. Geopyhs. Res. 85, 5871–5881 (1980).

    Article  ADS  Google Scholar 

  • Orton, G.S., et al.: Thermal maps of Jupiter: Spatial organization and time dependence of stratospheric temperatures, 1980 to 1990. Science 252, 537–542 (1991).

    Article  ADS  Google Scholar 

  • Orton, G., Yanamandra-Fisher, P.A.: Saturn's temperature field from high-resolution middle-infrared imaging. Science 307, 696–698 (2005).

    Article  ADS  Google Scholar 

  • Orton, G. A., et al.: Semi-annual oscillations in Saturn's low-latitude stratospheric temperatures. Nature 453, 196–199 (2008).

    Article  ADS  Google Scholar 

  • Peltier, W.R., Stuhne, G.R.: The upscale turbulent cascade: shear layers, cyclones, and gas giant bands. In Pearce, R.P. (ed.), Meteorology at the Millenium, pp. 43–61, Academic Press, New York (2002).

    Chapter  Google Scholar 

  • Pérez-Hoyos, S., et al.: Saturn's cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003). Icarus 176, 155–174 (2005).

    Article  ADS  Google Scholar 

  • Pérez-Hoyos, S., Sánchez-Lavega, A., French, R. G.: Short-term changes in the belt/zone structure of Saturn's Southern Hemisphere (1996–2004). Astronomy and Astrophysics 460, 641–645 (2006).

    Article  ADS  Google Scholar 

  • Piccioni, G., et al.: South-polar features on Venus similar to those near the north. Nature 450, 637–640 (2007).

    Article  ADS  Google Scholar 

  • Pirraglia, J.A.: Dissipationless decay of Jovian jets. Icarus 79, 196–207 (1989).

    Article  ADS  Google Scholar 

  • Porco, C.C., et al.: Cassini imaging of Jupiter's atmosphere, satellites, and rings. Science 299, 1541–1547 (2003).

    Article  ADS  Google Scholar 

  • Porco, C.C., et al.: Cassini imaging science: Instrument characteristics and capabilities and anticipated scientific investigations at Saturn. Space Sci. Rev. 115, 363–497 (2004).

    Article  ADS  Google Scholar 

  • Porco, C.C., et al.: Cassini imaging science: Initial results on Saturn's atmosphere. Science 307, 1243–1247 (2005).

    Article  ADS  Google Scholar 

  • Read, P.L., et al.: Jupiter's and Saturn's convectively driven banded jets in the laboratory. Geophys. Res. Lett. 31, L22701 (2004).

    Article  ADS  Google Scholar 

  • Read, P.L., et al.: Dynamics of convectively driven banded jets in the laboratory. J. Atmos. Sci. 64, 4031–4052 (2007).

    Article  ADS  Google Scholar 

  • Read, P.L., et al.: Mapping potential vorticity dynamics on Jupiter: 1. Zonal mean circulation from Cassini and Voyager 1 data. Quart. J. Roy. Meteor. Soc. 132, 1577–1603 (2006a).

    Google Scholar 

  • Read, P.L., Gierasch, P.J., Conrath, B.J.: Mapping potential-vorticity dynamics on Jupiter: II: the Great Red Spot from Voyager 1 and 2 data. Quart. J. Roy. Meteor. Soc. 132, 1605–1625 (2006b).

    Article  Google Scholar 

  • Read, P.L., et al.: Mapping potential vorticity dynamics on Saturn: Zonal mean circulation from Cassini and Voyager data. Planet. Space Sci., in press (2009).

    Google Scholar 

  • Rhines, P.B.: Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–443 (1975).

    Article  MATH  ADS  Google Scholar 

  • Rieke, G. H.: The thermal radiation of Saturn and its rings. Icarus 26, 37–44 (1975).

    Article  ADS  Google Scholar 

  • Salyk, C., et al.: Interaction between eddies and mean flow in Jupiter's atmosphere: Analysis of Cassini imaging data. Icarus 185, 430–442 (2006).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A.: Motions in Saturn's atmosphere: Before Voyager encounters. Icarus 49, 1–16 (1982).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A.: Saturn's Great White Spots. Sky and Telescope 78, 141–143 (1989).

    ADS  Google Scholar 

  • Sánchez-Lavega, A., Battaner, E.: Long-term changes in Saturn's atmospheric belts and zones. Astr. Astrophys. Suppl. Ser. 64, 287–301 (1986).

    ADS  Google Scholar 

  • Sánchez-Lavega, A., Battaner, E.: The nature of Saturn's atmospheric Great White Spots. Astron. Astrophys. 185, 315–326 (1987).

    ADS  Google Scholar 

  • Sánchez-Lavega, A., et al.: The great white spot and disturbances in Saturn's equatorial atmosphere during 1990. Nature 353, 397–401 (1991).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A. et al.: Temporal behavior of cloud morphologies and motions in Saturn's atmosphere. Journal of Geophysical Research 98 (E10), 18857–18872 (1993a).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A., et al.: Ground-based observations of Saturn's north polar spot and hexagon. Science 260, 329–332 (1993b).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A. et al.: Photometry of Saturn's 1990 equatorial disturbance. Icarus 108, 158–168 (1994).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A., et al.: Large-scale storms in Saturn's atmosphere during 1994. Science 271, 631–634 (1996).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A., et al.: New observations and studies of Saturn's long-lived north polar spot. Icarus 128, 322–334 (1997).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A., et al.: Discrete cloud activity in Saturn's equator during 1995, 1996, and 1997. Planet. Space Sci. 47, 1277–1283 (1999).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A., Rojas, J.F., Sada, P.V.: Saturn's zonal winds at cloud level. Icarus 147, 405–420 (2000).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega. A.: Observations of Saturn's ribbon wave 14 years after its discovery. Icarus 158, 272–275 (2002a).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A., et al.: No hexagonal wave around Saturn's Southern Pole. Icarus, 160, 216–219 (2002b).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A., et al.: A strong decrease in Saturn's equatorial jet at cloud level. Nature 423, 623–625 (2003).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A., et al.: Observations and models of the general circulation of Jupiter and Saturn. In Ulla, A., Manteiga, M. (eds.), Lecture Notes and Essays in Astrophysics I, pp. 63–85. Real Sociedad Española de Física, Universidad de Vigo (2004a).

    Google Scholar 

  • Sánchez-Lavega, A., et al.: Saturn's cloud morphology and zonal winds before the Cassini encounter. Icarus 170, 519–523 (2004b).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A., et al.: A strong vortex in Saturn's South Pole, Icarus 184, 524–531 (2006).

    Article  ADS  Google Scholar 

  • Sánchez-Lavega, A., Hueso, R., Pérez-Hoyos, S.: The three-dimensional structure of Saturn's equatorial jet at cloud level. Icarus 187, 510–519 (2007).

    Article  ADS  Google Scholar 

  • Sayanagi, K.M., Showman, A.P.: Effects of a large convective storm on Saturn's equatorial jet. Icarus 187, 520–539 (2007).

    Article  ADS  Google Scholar 

  • Sayanagi, K.M., Showman, A.P., Dowling, T.E.: The emergence of multiple robust zonal jets from freely-evolving, three-dimensional stratified geostrophic turbulence with applications to Jupiter. J. At-mos. Sci. 65, 3947–3962 (2008).

    Article  ADS  Google Scholar 

  • Schneider, T., Liu, J.J.: Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci. 66, 579–601 (2009).

    Article  ADS  Google Scholar 

  • Schumacher, C., Houze, R.A. Jr.: Stratiform precipitation production over sub-Saharan Africa and the tropical east Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc, 132, 2235–2255 (2006).

    Article  Google Scholar 

  • Scott, R.K., Polvani, L.M.: Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci. 64, 3158–3176 (2007).

    Article  ADS  Google Scholar 

  • Scott, R.K., Polvani, L.M.: Equatorial superrotation in shallow atmospheres. Geophys. Res. Letters 35, L24202, doi:10.1029/ 2008GL036060 (2008).

    Article  ADS  Google Scholar 

  • Showman, A.P.: Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn. J. Atmos. Sci. 64, 3132–3157 (2007).

    Article  ADS  Google Scholar 

  • Showman, A.P., de Pater, I.: Dynamical implications of Jupiter's tropo-spheric ammonia abundance. Icarus 174, 192–204 (2005).

    Article  ADS  Google Scholar 

  • Showman, A.P., Gierasch, P.J., Lian, Y.: Deep zonal winds can result from shallow driving in a giant-planet atmosphere. Icarus 182, 513– 526 (2006).

    Article  ADS  Google Scholar 

  • Smith, B.A., et al.: The Jupiter system through the eyes of Voyager 1. Science 204, 951–972 (1979).

    Article  ADS  Google Scholar 

  • Smith, B.A., et al.: Encounter with Saturn: Voyager 1 imaging science results. Science 212, 163–190 (1981).

    Article  ADS  Google Scholar 

  • Smith, B. A., et al.: A new look at the Saturn system: The Voyager 2 images. Science 215, 504–537 (1982).

    Article  ADS  Google Scholar 

  • Smith, K.S.: A local model for planetary atmospheres forced by small-scale convection. J. Atmos. Sci. 61, 1420–1433 (2004).

    Article  ADS  Google Scholar 

  • Sommeria, J., Meyers, S.D., Swinney, H.: Experiments on vortices and Rossby waves in eastward and westward jets. In A. R. Osborne (ed.), Nonlinear Topics in Ocean Physics, pp. 227–269, North-Holland, Amsterdam (1991).

    Google Scholar 

  • Sromovsky, L.A., et al.: Jovian winds from Voyager 2. Part II: Analysis of eddy transports. J. Atmos. Sci. 39, 1413–1432 (1982).

    Google Scholar 

  • Sromovsky, L.A., et al.: Voyager 2 observations of Saturn's northern mid-latitude cloud features: Morphology, motions, and evolution. J. Geophys. Res. 88, 8650–8666 (1983).

    Article  ADS  Google Scholar 

  • Stephens, G.L., et al.: The CloudSat mission and the A-Train: A new dimension to space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc. 83, 1771–1790 (2002).

    Article  Google Scholar 

  • Sukoriansky, S., Galperin, B., Dikovskaya, N.: Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets. Phys. Rev. Lett. 89, 124501-1–124501-4 (2002).

    Article  ADS  Google Scholar 

  • Sukoriansky, S., Dikovskaya, N., Galperin, B.: On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci. 64, 3312–3327 (2007).

    Article  ADS  Google Scholar 

  • Sukoriansky, S., Dikovskaya, N., Galperin, B.: Nonlinear waves in zonostrophic turbulence. Phys. Rev. Lett. 101, 178501 (2008).

    Article  ADS  Google Scholar 

  • Temma, T., et al.: Vertical structure modeling of Saturn's equatorial region using high spectral resolution imaging. Icarus 175, 464–489 (2005).

    Article  ADS  Google Scholar 

  • Theiss, J.: Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence. J. Phys. Ocean. 34, 1663–1678 (2004).

    Article  ADS  Google Scholar 

  • Tokunaga, A. T., et al.: Spatially resolved infrared observations of Saturn: II. The temperature enhancement at the south pole of Saturn. Icarus 36, 216–222 (1978).

    Google Scholar 

  • Tomasko, M.G., West, R.A., Orton, G.S., Teifel, V.G.: Cloud and aerosols in Saturn's atmosphere. In Gehrels, T., Matthews, M.S., (eds.), Saturn, pp. 150–194, Univ. Arizona Press, Tucson (1984).

    Google Scholar 

  • Trafton, L.: Long-term changes in Saturn's troposphere. Icarus 63, 374– 405 (1985).

    Article  ADS  Google Scholar 

  • Vasavada, A.R., Showman, A.P.: Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys. 68, 1935–1996 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  • Vasavada, A., et al.: Cassini imaging of Saturn: southern hemisphere winds and vortices. J. Geophys. Res. 111, E05004, doi:10.1029/2005JE002563 (2006).

    Article  Google Scholar 

  • Weidenschilling, S.J., Lewis, J.S.: Atmospheric and cloud structures of the Jovian planets. Icarus 20, 465–476 (1973).

    Article  ADS  Google Scholar 

  • Weir, S.T., Mitchell, A.C., Nellis, W.J.: Metallization of fluid molecular hydrogen at 140 GPa. Phys. Rev. Lett. 76, 1860–1863 (1996).

    Article  ADS  Google Scholar 

  • Westphal, J.A., et al.: Hubble Space Telescope observations of the 1990 equatorial disturbance on Saturn — images, albedos, and limb darkening. Icarus 100, 485–498 (1992).

    Article  ADS  Google Scholar 

  • Williams, G.P.: Planetary circulations 1: Barotropic representations of Jovian and terrestrial turbulence. J. Atmos. Sci. 35, 1399–1426 (1978).

    Article  ADS  Google Scholar 

  • Williams, G.P.: Jovian dynamics. Part III: Multiple, migrating, and equatorial jets. J. Atmos. Sci. 60, 1270–1296 (2003).

    Article  ADS  Google Scholar 

  • Wordsworth, R.D., Read, P.L., Yamazaki, Y.H.: Turbulence, waves and jets in a differentially heated rotating annulus experiment, Phys. Fluids 20, 126602 (2008).

    Article  ADS  Google Scholar 

  • Yamazaki, Y.H., Read, P.L., Skeet, D.R.: Hadley circulations and Kelvin wave-driven equatorial jets in the atmospheres of Jupiter and Saturn. Planet. Space Sci. 53, 508–525 (2005).

    Google Scholar 

  • Yanamandra-Fisher, P.A., et al.: Saturn's 5.2-μm cold spots: Unexpected cloud variability. Icarus 150, 189–193 (2001).

    Article  ADS  Google Scholar 

  • Zipser, E.J., et al.: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc. 87, 1057–1071 (2006).

    Article  Google Scholar 

  • Zuchowski, L.C., Read, PL., Yamazaki, Y.H.: Modeling Jupiter's cloud bands and decks: 1. Jet scale meridional circulations on Jupiter. Icarus 200, document 548–562 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by NASA and ESA through the Cassini-Huygens Mission and the NASA Planetary Atmospheres Program. We thank John Barbara and Lilly del Valle for assistance with several figures and two anonymous reviewers for constructive comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Genio, A.D.D. et al. (2009). Saturn Atmospheric Structure and Dynamics. In: Dougherty, M.K., Esposito, L.W., Krimigis, S.M. (eds) Saturn from Cassini-Huygens. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9217-6_6

Download citation

Publish with us

Policies and ethics