Space Science Reviews

, Volume 212, Issue 3–4, pp 1271–1314 | Cite as

Geoeffective Properties of Solar Transients and Stream Interaction Regions

  • E. K. J. KilpuaEmail author
  • A. Balogh
  • R. von Steiger
  • Y. D. Liu
Part of the following topical collections:
  1. The Scientific Foundation of Space Weather


Interplanetary Coronal Mass Ejections (ICMEs), their possible shocks and sheaths, and co-rotating interaction regions (CIRs) are the primary large-scale heliospheric structures driving geospace disturbances at the Earth. CIRs are followed by a faster stream where Alfvénic fluctuations may drive prolonged high-latitude activity. In this paper we highlight that these structures have all different origins, solar wind conditions and as a consequence, different geomagnetic responses. We discuss general solar wind properties of sheaths, ICMEs (in particular those showing the flux rope signatures), CIRs and fast streams and how they affect their solar wind coupling efficiency and the resulting magnetospheric activity. We show that there are two different solar wind driving modes: (1) Sheath-like with turbulent magnetic fields, and large Alfvén Mach (\(M_{A}\)) numbers and dynamic pressure, and (2) flux rope-like with smoothly varying magnetic field direction, and lower \(M_{A}\) numbers and dynamic pressure. We also summarize the key properties of interplanetary shocks for space weather and how they depend on solar cycle and the driver.


Interplanetary coronal mass ejections Interplanetary shocks Space weather Solar wind Magnetic storms Magnetosphere 



Y. D. Liu was supported by the Recruitment Program of Global Experts of China, NSFC under grant 41374173 and the Specialized Research Fund for State Key Laboratories of China. EK acknowledges Academy of Finland project 1267087, UH three-year grant project 490162 and HELCATS project 400931. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (SolMAG 724391).


  1. B.-H. Ahn, S.-I. Akasofu, Y. Kamide, The Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL. J. Geophys. Res. 88, 6275–6287 (1983). doi: 10.1029/JA088iA08p06275 ADSCrossRefGoogle Scholar
  2. S.-I. Akasofu, Interplanetary energy flux associated with magnetospheric substorms. Planet. Space Sci. 27, 425–431 (1979). doi: 10.1016/0032-0633(79)90119-3 ADSCrossRefGoogle Scholar
  3. S.-I. Akasofu, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 28, 121–190 (1981). doi: 10.1007/BF00218810 ADSCrossRefGoogle Scholar
  4. C.W. Allen, Relation between magnetic storms and solar activity. Mon. Not. R. Astron. Soc. 104, 13 (1944). doi: 10.1093/mnras/104.1.13 ADSCrossRefGoogle Scholar
  5. M.V. Alves, E. Echer, W.D. Gonzalez, Geoeffectiveness of corotating interaction regions as measured by Dst index. J. Geophys. Res. Space Phys. 111, A07S05 (2006). doi: 10.1029/2005JA011379 Google Scholar
  6. A. Badruddin, Z. Falak, Study of the geoeffectiveness of coronal mass ejections, corotating interaction regions and their associated structures observed during Solar Cycle 23. Astrophys. Space Sci. 361, 253 (2016). doi: 10.1007/s10509-016-2839-4 ADSCrossRefGoogle Scholar
  7. D.N. Baker, A.J. Klimas, D.A. Roberts, Examination of time-variable input effects in a nonlinear analogue magnetosphere model. Geophys. Res. Lett. 18, 1631–1634 (1991). doi: 10.1029/91GL01048 ADSCrossRefGoogle Scholar
  8. D.N. Baker, X. Li, A. Pulkkinen, C.M. Ngwira, M.L. Mays, A.B. Galvin, K.D.C. Simunac, A major solar eruptive event in July 2012: defining extreme space weather scenarios. Space Weather 11, 585–591 (2013). doi: 10.1002/swe.20097 ADSCrossRefGoogle Scholar
  9. S.D. Bale, M.A. Balikhin, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, E. Möbius, S.N. Walker, A. Balogh, D. Burgess, B. Lembège, E.A. Lucek, M. Scholer, S.J. Schwartz, M.F. Thomsen, Quasi-perpendicular shock structure and processes. Space Sci. Rev. 118, 161–203 (2005). doi: 10.1007/s11214-005-3827-0 ADSCrossRefGoogle Scholar
  10. A. Balogh, P. Riley, Overview of Heliospheric Shocks, in Cosmic Winds and the Heliosphere (University of Arizona Press, Tucson, 1997) Google Scholar
  11. A. Balogh, E.J. Smith, B.T. Tsurutani, D.J. Southwood, R.J. Forsyth, T.S. Horbury, The heliospheric magnetic field over the South polar region of the Sun. Science 268, 1007–1010 (1995). doi: 10.1126/science.268.5213.1007 ADSCrossRefGoogle Scholar
  12. A. Balogh, V. Bothmer, N.U. Crooker, R.J. Forsyth, G. Gloeckler, A. Hewish, M. Hilchenbach, R. Kallenbach, B. Klecker, J.A. Linker, E. Lucek, G. Mann, E. Marsch, A. Posner, I.G. Richardson, J.M. Schmidt, M. Scholer, Y.-M. Wang, R.F. Wimmer-Schweingruber, M.R. Aellig, P. Bochsler, S. Hefti, Z. Mikić, The solar origin of corotating interaction regions and their formation in the inner heliosphere. Space Sci. Rev. 89, 141–178 (1999). doi: 10.1023/A:1005245306874 ADSCrossRefGoogle Scholar
  13. J. Bartels, Terrestrial-magnetic activity and its relations to solar phenomena. Terr. Magn. Atmos. Electr. (J. Geophys. Res.) 37, 1 (1932). doi: 10.1029/TE037i001p00001 ADSzbMATHCrossRefGoogle Scholar
  14. J.W. Belcher, L. Davis Jr., Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534 (1971). doi: 10.1029/JA076i016p03534 ADSCrossRefGoogle Scholar
  15. X. Blanco-Cano, P. Kajdič, N. Omidi, C.T. Russell, Foreshock cavitons for different interplanetary magnetic field geometries: simulations and observations. J. Geophys. Res. Space Phys. 116, 09101 (2011). doi: 10.1029/2010JA016413 ADSGoogle Scholar
  16. X. Blanco-Cano, P. Kajdič, E. Aguilar-Rodríguez, C.T. Russell, L.K. Jian, J.G. Luhmann, Interplanetary shocks and foreshocks observed by STEREO during 2007–2010. J. Geophys. Res. Space Phys. 121, 992–1008 (2016). doi: 10.1002/2015JA021645 ADSCrossRefGoogle Scholar
  17. J.E. Borovsky, The rudiments of a theory of solar wind/magnetosphere coupling derived from first principles. J. Geophys. Res. Space Phys. 113, 08228 (2008). doi: 10.1029/2007JA012646 ADSGoogle Scholar
  18. J.E. Borovsky, J. Birn, The solar wind electric field does not control the dayside reconnection rate. J. Geophys. Res. Space Phys. 119, 751–760 (2014). doi: 10.1002/2013JA019193 ADSCrossRefGoogle Scholar
  19. J.E. Borovsky, M.H. Denton, Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. Space Phys. 111, A07S08 (2006). doi: 10.1029/2005JA011447 Google Scholar
  20. J.E. Borovsky, M.H. Denton, The differences between storms driven by helmet streamer CIRs and storms driven by pseudostreamer CIRs. J. Geophys. Res. Space Phys. 118, 5506–5521 (2013). doi: 10.1002/jgra.50524 ADSCrossRefGoogle Scholar
  21. J.E. Borovsky, H.O. Funsten, Role of solar wind turbulence in the coupling of the solar wind to the Earth’s magnetosphere. J. Geophys. Res. Space Phys. 108, 1246 (2003). doi: 10.1029/2002JA009601 ADSCrossRefGoogle Scholar
  22. J.E. Borovsky, K. Yakymenko, Substorm occurrence rates, substorm recurrence times, and solar wind structure. J. Geophys. Res. Space Phys. 122, 2973–2998 (2017). doi: 10.1002/2016JA023625 ADSGoogle Scholar
  23. J.E. Borovsky, R.J. Nemzek, R.D. Belian, The occurrence rate of magnetospheric-substorm onsets—random and periodic substorms. J. Geophys. Res. 98, 3807–3813 (1993). doi: 10.1029/92JA02556 ADSCrossRefGoogle Scholar
  24. J.E. Borovsky, M.F. Thomsen, D.J. McComas, The superdense plasma sheet: plasmaspheric origin, solar wind origin, or ionospheric origin? J. Geophys. Res. 102, 22089–22106 (1997). doi: 10.1029/96JA02469 ADSCrossRefGoogle Scholar
  25. V. Bothmer, R. Schwenn, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1–24 (1998). doi: 10.1007/s00585-997-0001-x ADSCrossRefGoogle Scholar
  26. O.J. Brambles, W. Lotko, B. Zhang, J. Ouellette, J. Lyon, M. Wiltberger, The effects of ionospheric outflow on ICME and SIR driven sawtooth events. J. Geophys. Res. Space Phys. 118, 6026–6041 (2013). doi: 10.1002/jgra.50522 ADSCrossRefGoogle Scholar
  27. D. Burgess, E.A. Lucek, M. Scholer, S.D. Bale, M.A. Balikhin, A. Balogh, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, B. Lembège, E. Möbius, S.J. Schwartz, M.F. Thomsen, S.N. Walker, Quasi-parallel shock structure and processes. Space Sci. Rev. 118, 205–222 (2005). doi: 10.1007/s11214-005-3832-3 ADSCrossRefGoogle Scholar
  28. L.F.E. Burlaga, in Magnetic Clouds, ed. by R. Schwenn, E. Marsch (1991), p. 152 Google Scholar
  29. L. Burlaga, E. Sittler, F. Mariani, R. Schwenn, Magnetic loop behind an interplanetary shock—Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673–6684 (1981). doi: 10.1029/JA086iA08p06673 ADSCrossRefGoogle Scholar
  30. L.F. Burlaga, L. Klein, N.R. Sheeley Jr., D.J. Michels, R.A. Howard, M.J. Koomen, R. Schwenn, H. Rosenbauer, A magnetic cloud and a coronal mass ejection. Geophys. Res. Lett. 9, 1317–1320 (1982). doi: 10.1029/GL009i012p01317 ADSCrossRefGoogle Scholar
  31. L.F. Burlaga, K.W. Behannon, L.W. Klein, Compound streams, magnetic clouds, and major geomagnetic storms. J. Geophys. Res. 92, 5725–5734 (1987). doi: 10.1029/JA092iA06p05725 ADSCrossRefGoogle Scholar
  32. L.F. Burlaga, R.M. Skoug, C.W. Smith, D.F. Webb, T.H. Zurbuchen, A. Reinard, Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998–1999. J. Geophys. Res. 106, 20957–20978 (2001). doi: 10.1029/2000JA000214 ADSCrossRefGoogle Scholar
  33. L.F. Burlaga, S.P. Plunkett, O.C. St. Cyr, Successive CMEs and complex ejecta. J. Geophys. Res. Space Phys. 107, 1266 (2002). doi: 10.1029/2001JA000255 ADSCrossRefGoogle Scholar
  34. R.K. Burton, R.L. McPherron, C.T. Russell, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 4204–4214 (1975). doi: 10.1029/JA080i031p04204 ADSCrossRefGoogle Scholar
  35. H.V. Cane, I.G. Richardson, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002. J. Geophys. Res. Space Phys. 108, 1156 (2003). doi: 10.1029/2002JA009817 ADSCrossRefGoogle Scholar
  36. H.V. Cane, I.G. Richardson, G. Wibberenz, Helios 1 and 2 observations of particle decreases, ejecta, and magnetic clouds. J. Geophys. Res. Space Phys. 102, 7075–7086 (1997). doi: 10.1029/97JA00149 ADSCrossRefGoogle Scholar
  37. R.C. Carrington, Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. R. Astron. Soc. 20, 13–15 (1859). doi: 10.1093/mnras/20.1.13 ADSCrossRefGoogle Scholar
  38. M.D. Cash, D.A. Biesecker, V. Pizzo, C.A. Koning, G. Millward, C.N. Arge, C.J. Henney, D. Odstrcil, Ensemble modeling of the 23 July 2012 coronal mass ejection. Space Weather 13, 611–625 (2015). doi: 10.1002/2015SW001232 ADSCrossRefGoogle Scholar
  39. J.K. Chao, R.P. Lepping, A correlative study of ssc’s, interplanetary shocks, and solar activity. J. Geophys. Res. 79, 1799 (1974). doi: 10.1029/JA079i013p01799 ADSCrossRefGoogle Scholar
  40. S. Chapman, V.C.A. Ferraro, The electrical state of solar streams of corpuscles. Mon. Not. R. Astron. Soc. 89, 470 (1929). doi: 10.1093/mnras/89.5.470 ADSzbMATHCrossRefGoogle Scholar
  41. E.W. Cliver, L. Svalgaard, The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity. Sol. Phys. 224, 407–422 (2004). doi: 10.1007/s11207-005-4980-z ADSCrossRefGoogle Scholar
  42. G.T. Cocconi, K. Greisen, S. Hayakawa, P. Morrison, The cosmic ray flare effect. Nuovo Cimento 8, 161–168 (1958) CrossRefGoogle Scholar
  43. W.D. Cramer, N.E. Turner, M.-C. Fok, N.Y. Buzulukova, Effects of different geomagnetic storm drivers on the ring current: CRCM results. J. Geophys. Res. Space Phys. 118, 1062–1073 (2013). doi: 10.1002/jgra.50138 ADSCrossRefGoogle Scholar
  44. S.R. Cranmer, Coronal holes and the high-speed solar wind. Space Sci. Rev. 101, 229–294 (2002) ADSCrossRefGoogle Scholar
  45. N.U. Crooker, Solar and heliospheric geoeffective disturbances. J. Atmos. Sol.-Terr. Phys. 62, 1071–1085 (2000). doi: 10.1016/S1364-6826(00)00098-5 ADSCrossRefGoogle Scholar
  46. N.U. Crooker, C.-L. Huang, S.M. Lamassa, D.E. Larson, S.W. Kahler, H.E. Spence, Heliospheric plasma sheets. J. Geophys. Res. Space Phys. 109, 03107 (2004). doi: 10.1029/2003JA010170 ADSCrossRefGoogle Scholar
  47. N.U. Crooker, S.K. Antiochos, X. Zhao, M. Neugebauer, Global network of slow solar wind. J. Geophys. Res. Space Phys. 117, 04104 (2012). doi: 10.1029/2011JA017236 ADSGoogle Scholar
  48. J.J. Curto, T. Araki, L.F. Alberca, Evolution of the concept of sudden storm commencements and their operative identification. Earth Planets Space 59, i–xii (2007) CrossRefGoogle Scholar
  49. I.A. Daglis, J.U. Kozyra, Outstanding issues of ring current dynamics. J. Atmos. Sol.-Terr. Phys. 64, 253–264 (2002). doi: 10.1016/S1364-6826(01)00087-6 ADSCrossRefGoogle Scholar
  50. I.A. Daglis, R.M. Thorne, W. Baumjohann, S. Orsini, The terrestrial ring current: origin, formation, and decay. Rev. Geophys. 37, 407–438 (1999). doi: 10.1029/1999RG900009 ADSCrossRefGoogle Scholar
  51. M.H. Denton, J.E. Borovsky, R.M. Skoug, M.F. Thomsen, B. Lavraud, M.G. Henderson, R.L. McPherron, J.C. Zhang, M.W. Liemohn, Geomagnetic storms driven by ICME- and CIR-dominated solar wind. J. Geophys. Res. Space Phys. 111, A07S07 (2006). doi: 10.1029/2005JA011436 Google Scholar
  52. A.P. Dimmock, K. Nykyri, H. Karimabadi, A. Osmane, T.I. Pulkkinen, A statistical study into the spatial distribution and dawn-dusk asymmetry of dayside magnetosheath ion temperatures as a function of upstream solar wind conditions. J. Geophys. Res. Space Phys. 120, 2767–2782 (2015). doi: 10.1002/2014JA020734 ADSCrossRefGoogle Scholar
  53. J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961). doi: 10.1103/PhysRevLett.6.47 ADSCrossRefGoogle Scholar
  54. E. Echer, W.D. Gonzalez, Geoeffectiveness of interplanetary shocks, magnetic clouds, sector boundary crossings and their combined occurrence. Geophys. Res. Lett. 31, 09808 (2004). doi: 10.1029/2003GL019199 ADSGoogle Scholar
  55. E. Echer, W.D. Gonzalez, B.T. Tsurutani, Interplanetary conditions leading to superintense geomagnetic storms (\(\mbox{Dst} \leq - 250~\mbox{nT}\)) during Solar Cycle 23. Geophys. Res. Lett. 35, L06S03 (2008a). doi: 10.1029/2007GL0317 CrossRefGoogle Scholar
  56. E. Echer, W.D. Gonzalez, B.T. Tsurutani, A.L.C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (\(\mbox{Dst} \leq -100~\mbox{nT}\)) during Solar Cycle 23 (1996–2006). J. Geophys. Res. 113, A05221 (2008b). doi: 10.1029/2007JA012744 ADSGoogle Scholar
  57. W. Ellis, On the relation between the diurnal range of magnetic declination and horizontal force and the period of solar spot frequency. Proc. R. Soc. Lond. Ser. I 63, 64–78 (1898) CrossRefGoogle Scholar
  58. C. Farrugia, D. Berdichevsky, Evolutionary signatures in complex ejecta and their driven shocks. Ann. Geophys. 22, 3679–3698 (2004). doi: 10.5194/angeo-22-3679-2004 ADSCrossRefGoogle Scholar
  59. C.J. Farrugia, M.P. Freeman, L.F. Burlaga, R.P. Lepping, K. Takahashi, The Earth’s magnetosphere under continued forcing—substorm activity during the passage of an interplanetary magnetic cloud. J. Geophys. Res. 98, 7657–7671 (1993). doi: 10.1029/92JA02351 ADSCrossRefGoogle Scholar
  60. C.J. Farrugia, V.K. Jordanova, M.F. Thomsen, G. Lu, S.W.H. Cowley, K.W. Ogilvie, A two-ejecta event associated with a two-step geomagnetic storm. J. Geophys. Res. Space Phys. 111, 11104 (2006). doi: 10.1029/2006JA011893 ADSCrossRefGoogle Scholar
  61. F.R. Fenrich, J.G. Luhmann, Geomagnetic response to magnetic clouds of different polarity. Geophys. Res. Lett. 25, 2999–3002 (1998). doi: 10.1029/98GL51180 ADSCrossRefGoogle Scholar
  62. S.E. Forbush, On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 51, 1108–1109 (1937). doi: 10.1103/PhysRev.51.1108.3 ADSCrossRefGoogle Scholar
  63. J. Geiss, G. Gloeckler, R. von Steiger, Origin of the solar wind from composition data. Space Sci. Rev. 72, 49–60 (1995). doi: 10.1007/BF00768753 ADSCrossRefGoogle Scholar
  64. T. Gold, Discussion on shock waves and rarefied gas dynamics, in Gas Dynamics of Cosmic Clouds. IAU Symposium, vol. 2 (1955), pp. 97–105 Google Scholar
  65. T. Gold, Magnetic storms. Space Sci. Rev. 1, 100–114 (1962). doi: 10.1007/BF00174637 ADSCrossRefGoogle Scholar
  66. H. Goldstein, On the field configuration in magnetic clouds, in NASA Conference Publication. NASA Conference Publication, vol. 228 (1983) Google Scholar
  67. W.D. Gonzalez, B.T. Tsurutani, Criteria of interplanetary parameters causing intense magnetic storms (Dst of less than −100 nT). Planet. Space Sci. 35, 1101–1109 (1987). doi: 10.1016/0032-0633(87)90015-8 ADSCrossRefGoogle Scholar
  68. W.D. Gonzalez, A.L.C. Gonzalez, B.T. Tsurutani, Dual-peak solar cycle distribution of intense geomagnetic storms. Planet. Space Sci. 38, 181–187 (1990). doi: 10.1016/0032-0633(90)90082-2 ADSCrossRefGoogle Scholar
  69. W.D. Gonzalez, J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, V.M. Vasyliunas, What is a geomagnetic storm? J. Geophys. Res. 99, 5771–5792 (1994). doi: 10.1029/93JA02867 ADSCrossRefGoogle Scholar
  70. W.D. Gonzalez, A.L.C. de Gonzalez, A. Dal Lago, B.T. Tsurutani, J.K. Arballo, G.K. Lakhina, B. Buti, C.M. Ho, S.-T. Wu, Magnetic cloud field intensities and solar wind velocities. Geophys. Res. Lett. 25, 963–966 (1998) ADSCrossRefGoogle Scholar
  71. W.D. Gonzalez, B.T. Tsurutani, A.L. Clúa de Gonzalez, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529–562 (1999). doi: 10.1023/A:1005160129098 ADSCrossRefGoogle Scholar
  72. W.D. Gonzalez, E. Echer, B.T. Tsurutani, A.L. Clúa de Gonzalez, A. Dal Lago, Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 158, 69–89 (2011). doi: 10.1007/s11214-010-9715-2 ADSCrossRefGoogle Scholar
  73. J.A. González-Esparza, A. Balogh, R.J. Forsyth, M. Neugebauer, E.J. Smith, J.L. Phillips, Interplanetary shock waves and large-scale structures: Ulysses’ observations in and out of the ecliptic plane. J. Geophys. Res. 101, 17057–17072 (1996). doi: 10.1029/96JA00685 ADSCrossRefGoogle Scholar
  74. N. Gopalswamy, S. Nunes, S. Yashiro, R.A. Howard, Variability of solar eruptions during cycle 23. Adv. Space Res. 34, 391–396 (2004). doi: 10.1016/j.asr.2003.10.054 ADSCrossRefGoogle Scholar
  75. N. Gopalswamy, P. Makela, S. Akiyama, S. Yashiro, N. Thakur, CMEs during the two activity peaks in cycle 24 and their space weather consequences. Sun Geosph. 10, 111–118 (2015) ADSGoogle Scholar
  76. J.T. Gosling, The solar flare myth. J. Geophys. Res. 98, 18937–18950 (1993). doi: 10.1029/93JA01896 ADSCrossRefGoogle Scholar
  77. J.T. Gosling, D.J. McComas, Field line draping about fast coronal mass ejecta—a source of strong out-of-the-ecliptic interplanetary magnetic fields. Geophys. Res. Lett. 14, 355–358 (1987). doi: 10.1029/GL014i004p00355 ADSCrossRefGoogle Scholar
  78. J.T. Gosling, V.J. Pizzo, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21–52 (1999). doi: 10.1023/A:1005291711900 ADSCrossRefGoogle Scholar
  79. J.T. Gosling, V. Pizzo, S.J. Bame, Anomalously low proton temperatures in the solar wind following interplanetary shock waves—evidence for magnetic bottles? J. Geophys. Res. 78, 2001 (1973). doi: 10.1029/JA078i013p02001 ADSCrossRefGoogle Scholar
  80. J.T. Gosling, E. Hildner, R.M. MacQueen, R.H. Munro, A.I. Poland, C.L. Ross, Direct observations of a flare related coronal and solar wind disturbance. Sol. Phys. 40, 439–448 (1975). doi: 10.1007/BF00162390 ADSCrossRefGoogle Scholar
  81. J.T. Gosling, J.R. Asbridge, S.J. Bame, W.C. Feldman, Solar wind stream interfaces. J. Geophys. Res. 83, 1401–1412 (1978). doi: 10.1029/JA083iA04p01401 ADSCrossRefGoogle Scholar
  82. J.T. Gosling, D.J. McComas, J.L. Phillips, S.J. Bame, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831–7839 (1991). doi: 10.1029/91JA00316 ADSCrossRefGoogle Scholar
  83. W.M.H. Greaves, H.W. Newton, On the recurrence of magnetic storms. Mon. Not. R. Astron. Soc. 89, 641–646 (1929). doi: 10.1093/mnras/89.7.641 ADSCrossRefGoogle Scholar
  84. J. Guo, X. Feng, J. Zhang, P. Zuo, C. Xiang, Statistical properties and geoefficiency of interplanetary coronal mass ejections and their sheaths during intense geomagnetic storms. J. Geophys. Res. Space Phys. 115, 09107 (2010). doi: 10.1029/2009JA015140 ADSCrossRefGoogle Scholar
  85. J. Guo, X. Feng, B.A. Emery, J. Zhang, C. Xiang, F. Shen, W. Song, Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res. Space Phys. 116, 05106 (2011). doi: 10.1029/2011JA016490 ADSCrossRefGoogle Scholar
  86. M.R. Hairston, K.A. Drake, R. Skoug, Saturation of the ionospheric polar cap potential during the October-November 2003 superstorms. J. Geophys. Res. Space Phys. 110, 0926 (2005). doi: 10.1029/2004JA010864 Google Scholar
  87. R. Hajra, E. Echer, B.T. Tsurutani, W.D. Gonzalez, Solar wind-magnetosphere energy coupling efficiency and partitioning: HILDCAAs and preceding CIR storms during solar cycle 23. J. Geophys. Res. Space Phys. 119, 2675–2690 (2014). doi: 10.1002/2013JA019646 ADSCrossRefGoogle Scholar
  88. R.A. Harrison, J.A. Davies, C. Möstl, Y. Liu, M. Temmer, M.M. Bisi, J.P. Eastwood, C.A. de Koning, N. Nitta, T. Rollett, C.J. Farrugia, R.J. Forsyth, B.V. Jackson, E.A. Jensen, E.K.J. Kilpua, D. Odstrcil, D.F. Webb, An analysis of the origin and propagation of the multiple coronal mass ejections of 2010 August 1. Astrophys. J. 750, 45 (2012). doi: 10.1088/0004-637X/750/1/45 ADSCrossRefGoogle Scholar
  89. H. Hasegawa, M. Fujimoto, T.-D. Phan, H. Rème, A. Balogh, M.W. Dunlop, C. Hashimoto, R. TanDokoro, Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 430, 755–758 (2004). doi: 10.1038/nature02799 ADSCrossRefGoogle Scholar
  90. T. Henke, J. Woch, R. Schwenn, U. Mall, G. Gloeckler, R. von Steiger, R.J. Forsyth, A. Balogh, Ionization state and magnetic topology of coronal mass ejections. J. Geophys. Res. 106, 10597–10614 (2001). doi: 10.1029/2000JA900176 ADSCrossRefGoogle Scholar
  91. H. Hietala, T.V. Laitinen, K. Andréeová, R. Vainio, A. Vaivads, M. Palmroth, T.I. Pulkkinen, H.E.J. Koskinen, E.A. Lucek, H. Rème, Supermagnetosonic jets behind a collisionless quasiparallel shock. Phys. Rev. Lett. 103(24), 245001 (2009). doi: 10.1103/PhysRevLett.103.245001 ADSCrossRefGoogle Scholar
  92. J. Hirshberg, A. Alksne, D.S. Colburn, S.J. Bame, A.J. Hundhausen, Observation of a solar flare induced interplanetary shock and helium-enriched driver gas. J. Geophys. Res. 75, 1 (1970). doi: 10.1029/JA075i001p00001 ADSCrossRefGoogle Scholar
  93. L. Holappa, K. Mursula, T. Asikainen, A new method to estimate annual solar wind parameters and contributions of different solar wind structures to geomagnetic activity. J. Geophys. Res. Space Phys. 119, 9407–9418 (2014). doi: 10.1002/2014JA020599 ADSCrossRefGoogle Scholar
  94. C.-S. Huang, G. Le, G.D. Reeves, Periodic magnetospheric substorms during fluctuating interplanetary magnetic field Bz. Geophys. Res. Lett. 31, 14801 (2004). doi: 10.1029/2004GL020180 ADSCrossRefGoogle Scholar
  95. K. Huttunen, H. Koskinen, Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity. Ann. Geophys. 22, 1729–1738 (2004). doi: 10.5194/angeo-22-1729-2004 ADSCrossRefGoogle Scholar
  96. K.E.J. Huttunen, H.E.J. Koskinen, R. Schwenn, Variability of magnetospheric storms driven by different solar wind perturbations. J. Geophys. Res. Space Phys. 107, 1121 (2002). doi: 10.1029/2001JA900171 ADSCrossRefGoogle Scholar
  97. K.E.J. Huttunen, R. Schwenn, V. Bothmer, H.E.J. Koskinen, Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys. 23, 625–641 (2005). doi: 10.5194/angeo-23-625-2005 ADSCrossRefGoogle Scholar
  98. L. Jian, C.T. Russell, J.G. Luhmann, R.M. Skoug, Properties of interplanetary coronal mass ejections at one AU during 1995–2004. Sol. Phys. 239, 393–436 (2006a) ADSCrossRefGoogle Scholar
  99. L. Jian, C.T. Russell, J.G. Luhmann, R.M. Skoug, Properties of stream interactions at one AU during 1995–2004. Sol. Phys. 239, 337–392 (2006b) ADSCrossRefGoogle Scholar
  100. G.H. Jones, A. Balogh, Context and heliographic dependence of heliospheric planar magnetic structures. J. Geophys. Res. 105, 12713–12724 (2000). doi: 10.1029/2000JA900003 ADSCrossRefGoogle Scholar
  101. G.H. Jones, A. Rees, A. Balogh, R.J. Forsyth, The draping of heliospheric magnetic fields upstream of coronal mass ejecta. Geophys. Res. Lett. 29, 1463 (2002). doi: 10.1029/2001GL014110 ADSGoogle Scholar
  102. V.K. Jordanova, H. Matsui, P.A. Puhl-Quinn, M.F. Thomsen, K. Mursula, L. Holappa, Ring current development during high speed streams. J. Atmos. Sol.-Terr. Phys. 71, 1093–1102 (2009). doi: 10.1016/j.jastp.2008.09.043 ADSCrossRefGoogle Scholar
  103. J.A. Joselyn, B.T. Tsurutani, Geomagnetic sudden impulses and storm sudden commencements—a note on terminology. EOS Trans. 71, 1808 (1990). doi: 10.1029/90EO00350 ADSCrossRefGoogle Scholar
  104. S. Jurac, J.C. Kasper, J.D. Richardson, A.J. Lazarus, Geomagnetic disturbances and their relationship to interplanetary shock parameters. Geophys. Res. Lett. 29, 1463 (2002). doi: 10.1029/2001GL014034 ADSGoogle Scholar
  105. Y. Kamide, W. Baumjohann, I.A. Daglis, W.D. Gonzalez, M. Grande, J.A. Joselyn, R.L. McPherron, J.L. Phillips, E.G.D. Reeves, G. Rostoker, A.S. Sharma, H.J. Singer, B.T. Tsurutani, V.M. Vasyliunas, Current understanding of magnetic storms: storm-substorm relationships. J. Geophys. Res. 103 17705–17728 (1998a) ADSCrossRefGoogle Scholar
  106. Y. Kamide, J.-H. Shue, X. Li, G. Lu, M.J. Brittnacher, G.K. Parks, G.D. Reeves, Internally and externally triggered substorms: a case study of the January 10, 1997 events, in Substorms-4, 1998b Google Scholar
  107. Y. Kamide, N. Yokoyama, W. Gonzalez, B.T. Tsurutani, I.A. Daglis, A. Brekke, S. Masuda, Two-step development of geomagnetic storms. J. Geophys. Res. 103, 6917–6922 (1998c) ADSCrossRefGoogle Scholar
  108. R. Kataoka, S. Watari, N. Shimada, H. Shimazu, K. Marubashi, Downstream structures of interplanetary fast shocks associated with coronal mass ejections. Geophys. Res. Lett. 32, 12103 (2005). doi: 10.1029/2005GL022777 ADSGoogle Scholar
  109. R. Kataoka, D. Shiota, E. Kilpua, K. Keika, Pileup accident hypothesis of magnetic storm on 17 March 2015. Geophys. Res. Lett. 42, 5155–5161 (2015). doi: 10.1002/2015GL064816 ADSCrossRefGoogle Scholar
  110. E.K.J. Kilpua, J.G. Luhmann, J. Gosling, Y. Li, H. Elliott, C.T. Russell, L. Jian, A.B. Galvin, D. Larson, P. Schroeder, K. Simunac, G. Petrie, Small solar wind transients and their connection to the large-scale coronal structure. Sol. Phys. 256, 327–344 (2009). doi: 10.1007/s11207-009-9366-1 ADSCrossRefGoogle Scholar
  111. E.K.J. Kilpua, L.K. Jian, Y. Li, J.G. Luhmann, C.T. Russell, Multipoint ICME encounters: pre-STEREO and STEREO observations. J. Atmos. Sol.-Terr. Phys. 73, 1228–1241 (2011). doi: 10.1016/j.jastp.2010.10.012 ADSCrossRefGoogle Scholar
  112. E.K.J. Kilpua, Y. Li, J.G. Luhmann, L.K. Jian, C.T. Russell, On the relationship between magnetic cloud field polarity and geoeffectiveness. Ann. Geophys. 30, 1037–1050 (2012). doi: 10.5194/angeo-30-1037-2012 ADSCrossRefGoogle Scholar
  113. E.K.J. Kilpua, H. Hietala, H.E.J. Koskinen, D. Fontaine, L. Turc, Magnetic field and dynamic pressure ULF fluctuations in coronal-mass-ejection-driven sheath regions. Ann. Geophys. 31, 1559–1567 (2013a) ADSCrossRefGoogle Scholar
  114. E.K.J. Kilpua, A. Isavnin, A. Vourlidas, H.E.J. Koskinen, L. Rodriguez, On the relationship between interplanetary coronal mass ejections and magnetic clouds. Ann. Geophys. 31, 1251–1265 (2013b) ADSCrossRefGoogle Scholar
  115. E.K.J. Kilpua, E. Lumme, K. Andreeova, A. Isavnin, H.E.J. Koskinen, Properties and drivers of fast interplanetary shocks near the orbit of the Earth (1995–2013). J. Geophys. Res. 120, 4112–4125 (2015a) CrossRefGoogle Scholar
  116. E.K.J. Kilpua, N. Olspert, A. Grigorievskiy, M.J. Käpylä, E.I. Tanskanen, H. Miyahara, R. Kataoka, J. Pelt, Y.D. Liu, Statistical study of strong and extreme geomagnetic disturbances and solar cycle characteristics. Astrophys. J. 806, 272 (2015b) ADSCrossRefGoogle Scholar
  117. E.K.J. Kilpua, H. Hietala, D.L. Turner, H.E.J. Koskinen, T.I. Pulkkinen, J.V. Rodriguez, G.D. Reeves, S.G. Claudepierre, H.E. Spence, Unraveling the drivers of the storm time radiation belt response. Geophys. Res. Lett. 42, 3076–3084 (2015c) ADSCrossRefGoogle Scholar
  118. E.K.J. Kilpua, H.E.J. Koskinen, T.I. Pulkkinen, Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Sol. Phys. (2017) Google Scholar
  119. L.W. Klein, L.F. Burlaga, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613–624 (1982). doi: 10.1029/JA087iA02p00613 ADSCrossRefGoogle Scholar
  120. A.J. Klimas, D.N. Baker, D.A. Roberts, D.H. Fairfield, J. Buechner, A nonlinear dynamical analogue model of geomagnetic activity. J. Geophys. Res. 97, 12 (1992). doi: 10.1029/92JA00794 CrossRefGoogle Scholar
  121. D.J. Knipp, W.K. Tobiska, B.A. Emery, Direct and indirect thermospheric heating sources for solar cycles 21–23. Sol. Phys. 224, 495–505 (2004). doi: 10.1007/s11207-005-6393-4 ADSCrossRefGoogle Scholar
  122. H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth (Springer, Berlin, 2011) CrossRefGoogle Scholar
  123. H.E.J. Koskinen, E.I. Tanskanen, Magnetospheric energy budget and the epsilon parameter. J. Geophys. Res. Space Phys. 107, 1415 (2002). doi: 10.1029/2002JA009283 ADSCrossRefGoogle Scholar
  124. J.U. Kozyra, M.W. Liemohn, C.R. Clauer, A.J. Ridley, M.F. Thomsen, J.E. Borovsky, J.L. Roeder, V.K. Jordanova, W.D. Gonzalez, Multistep Dst development and ring current composition changes during the 4–6 June 1991 magnetic storm. J. Geophys. Res. Space Phys. 107, 1224 (2002). doi: 10.1029/2001JA000023 ADSGoogle Scholar
  125. A.S. Krieger, A.F. Timothy, E.C. Roelof, A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys. 29, 505–525 (1973). doi: 10.1007/BF00150828 ADSCrossRefGoogle Scholar
  126. B. Lavraud, J.E. Borovsky, Altered solar wind-magnetosphere interaction at low Mach numbers: coronal mass ejections. J. Geophys. Res. Space Phys. 113, 0008 (2008). doi: 10.1029/2008JA013192 Google Scholar
  127. B. Lavraud, M.F. Thomsen, J.E. Borovsky, M.H. Denton, T.I. Pulkkinen, Magnetosphere preconditioning under northward IMF: evidence from the study of coronal mass ejection and corotating interaction region geoeffectiveness. J. Geophys. Res. Space Phys. 111, 09208 (2006). doi: 10.1029/2005JA011566 ADSCrossRefGoogle Scholar
  128. B. Lavraud, A. Ruffenach, A.P. Rouillard, P. Kajdic, W.B. Manchester, N. Lugaz, Geo-effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection. J. Geophys. Res. Space Phys. 119, 26–35 (2014). doi: 10.1002/2013JA019154 ADSCrossRefGoogle Scholar
  129. G.-M. Le, Z.-Y. Cai, H.-N. Wang, Z.-Q. Yin, P. Li, Solar cycle distribution of major geomagnetic storms. Res. Astron. Astrophys. 13, 739–748 (2013). doi: 10.1088/1674-4527/13/6/013 ADSCrossRefGoogle Scholar
  130. R.P. Lepping, L.F. Burlaga, J.A. Jones, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957–11965 (1990). doi: 10.1029/JA095iA08p11957 ADSCrossRefGoogle Scholar
  131. R.P. Lepping, L.F. Burlaga, A. Szabo, K.W. Ogilvie, W.H. Mish, D. Vassiliadis, A.J. Lazarus, J.T. Steinberg, C.J. Farrugia, L. Janoo, F. Mariani, The wind magnetic cloud and events of October 18-20, 1995: interplanetary properties and as triggers for geomagnetic activity. J. Geophys. Res. 102, 14049–14064 (1997). doi: 10.1029/97JA00272 ADSCrossRefGoogle Scholar
  132. Y. Li, J.G. Luhmann, B.J. Lynch, E.K.J. Kilpua, Cyclic reversal of magnetic cloud poloidal field. Sol. Phys. 270, 331–346 (2011) ADSCrossRefGoogle Scholar
  133. M.W. Liemohn, J.U. Kozyra, M.F. Thomsen, J.L. Roeder, G. Lu, J.E. Borovsky, T.E. Cayton, Dominant role of the asymmetric ring current in producing the stormtime Dst. J. Geophys. Res. 106, 10883–10904 (2001). doi: 10.1029/2000JA000326 ADSCrossRefGoogle Scholar
  134. M.W. Liemohn, M. Jazowski, J.U. Kozyra, N. Ganushkina, M.F. Thomsen, J.E. Borovsky, CIR versus CME drivers of the ring current during intense magnetic storms. Proc. R. Soc. Lond. Ser. A 466, 3305–3328 (2010). doi: 10.1098/rspa.2010.0075 ADSCrossRefGoogle Scholar
  135. F.A. Lindeman, Note on the theory of magnetic storms. Philos. Mag. 38, 669–684 (1911) CrossRefGoogle Scholar
  136. Y. Liu, J.D. Richardson, J.W. Belcher, A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU. Planet. Space Sci. 53, 3–17 (2005). doi: 10.1016/j.pss.2004.09.023 ADSCrossRefGoogle Scholar
  137. Y. Liu, J.D. Richardson, J.W. Belcher, J.C. Kasper, R.M. Skoug, Plasma depletion and mirror waves ahead of interplanetary coronal mass ejections. J. Geophys. Res. Space Phys. 111, 09108 (2006). doi: 10.1029/2006JA011723 ADSCrossRefGoogle Scholar
  138. Y. Liu, J.G. Luhmann, R. Müller-Mellin, P.C. Schroeder, L. Wang, R.P. Lin, S.D. Bale, Y. Li, M.H. Acuña, J.-A. Sauvaud, A comprehensive view of the 2006 December 13 CME: from the Sun to interplanetary space. Astrophys. J. 689, 563–571 (2008a). doi: 10.1086/592031 ADSCrossRefGoogle Scholar
  139. Y. Liu, W.B. Manchester, J.D. Richardson, J.G. Luhmann, R.P. Lin, S.D. Bale, Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness. J. Geophys. Res. 113, A00B03 (2008b) Google Scholar
  140. Y.D. Liu, J.G. Luhmann, C. Möstl, J.C. Martinez-Oliveros, S.D. Bale, R.P. Lin, R.A. Harrison, M. Temmer, D.F. Webb, D. Odstrcil, Interactions between coronal mass ejections viewed in coordinated imaging and in situ observations. Astrophys. J. Lett. 746, 15 (2012). doi: 10.1088/2041-8205/746/2/L15 ADSCrossRefGoogle Scholar
  141. Y.D. Liu, J.G. Luhmann, N. Lugaz, C. Möstl, J.A. Davies, S.D. Bale, R.P. Lin, On Sun-to-Earth propagation of coronal mass ejections. Astrophys. J. 769, 45 (2013). doi: 10.1088/0004-637X/769/1/45 ADSCrossRefGoogle Scholar
  142. Y.D. Liu, J.G. Luhmann, P. Kajdič, E.K.J. Kilpua, N. Lugaz, N.V. Nitta, C. Möstl, B. Lavraud, S.D. Bale, C.J. Farrugia, A.B. Galvin, Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat. Commun. 5, 3481 (2014a) ADSGoogle Scholar
  143. Y.D. Liu, Z. Yang, R. Wang, J.G. Luhmann, J.D. Richardson, N. Lugaz, Sun-to-Earth characteristics of two coronal mass ejections interacting near 1 AU: formation of a complex ejecta and generation of a two-step geomagnetic storm. Astrophys. J. Lett. 793, L41 2014b) ADSCrossRefGoogle Scholar
  144. Y.D. Liu, H. Hu, R. Wang, Z. Yang, B. Zhu, Y.A. Liu, J.G. Luhmann, J.D. Richardson, Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys. J. Lett. 809, 34 (2015). doi: 10.1088/2041-8205/809/2/L34 ADSCrossRefGoogle Scholar
  145. Y.D. Liu, H. Hu, C. Wang, J.G. Luhmann, J.D. Richardson, Z. Yang, R. Wang, On sun-to-Earth propagation of coronal mass ejections: II. Slow events and comparison with others. Astrophys. J. Suppl. Ser. 222, 23 (2016). doi: 10.3847/0067-0049/222/2/23 ADSCrossRefGoogle Scholar
  146. M. Lockwood, M.J. Owens, L.A. Barnard, S. Bentley, C.J. Scott, C.E. Watt, On the origins and timescales of geoeffective IMF. Space Weather 14 406–432 (2015). doi: 10.1002/2016SW001375 ADSCrossRefGoogle Scholar
  147. R.E. Lopez, M. Wiltberger, S. Hernandez, J.G. Lyon, Solar wind density control of energy transfer to the magnetosphere. Geophys. Res. Lett. 31, 08804 (2004). doi: 10.1029/2003GL018780 ADSCrossRefGoogle Scholar
  148. R.E. Lopez, R. Bruntz, E.J. Mitchell, M. Wiltberger, J.G. Lyon, V.G. Merkin, Role of magnetosheath force balance in regulating the dayside reconnection potential. J. Geophys. Res. Space Phys. 115, 12216 (2010). doi: 10.1029/2009JA014597 ADSGoogle Scholar
  149. E.A. Lucek, A. Balogh, The identification and characterization of Alfvénic fluctuations in ULYSSES data at midlatitudes. Astrophys. J. 507, 984–990 (1998). doi: 10.1086/306372 ADSCrossRefGoogle Scholar
  150. E.A. Lucek, T.S. Horbury, I. Dandouras, H. RèMe, Cluster observations of the Earth’s quasi-parallel bow shock. J. Geophys. Res. Space Phys. 113, 0702 (2008). doi: 10.1029/2007JA012756 Google Scholar
  151. N. Lugaz, C.J. Farrugia, A new class of complex ejecta resulting from the interaction of two CMEs and its expected geoeffectiveness. Geophys. Res. Lett. 41, 769–776 (2014). doi: 10.1002/2013GL058789 ADSCrossRefGoogle Scholar
  152. N. Lugaz, C.J. Farrugia, C.W. Smith, K. Paulson, Shocks inside CMEs: a survey of properties from 1997 to 2006. J. Geophys. Res. Space Phys. 120, 2409–2427 (2015). doi: 10.1002/2014JA020848 ADSCrossRefGoogle Scholar
  153. N. Lugaz, C.J. Farrugia, C.-L. Huang, R.M. Winslow, H.E. Spence, N.A. Schwadron, Earth’s magnetosphere and outer radiation belt under sub-Alfvénic solar wind. Nat. Commun. 7, 13001 (2016) ADSCrossRefGoogle Scholar
  154. L.R. Lyons, G.T. Blanchard, J.C. Samson, R.P. Lepping, T. Yamamoto, T. Moretto, Coordinated observations demonstrating external substorm triggering. J. Geophys. Res. 102, 27039–27052 (1997). doi: 10.1029/97JA02639 ADSCrossRefGoogle Scholar
  155. W. Manchester, E.K.J. Kilpua, Y.D. Liu, N. Lugaz, P. Riley, T. Török, B. Vršnak, The physical processes of CME/ICME evolution. Space Sci. Rev. (2017, this issue). doi: 10.1007/s11214-017-0394-0. Provided by the SAO/NASA Astrophysics Data System
  156. E.W. Maunder, Magnetic disturbance and associated sun-spots. Mon. Not. R. Astron. Soc. 65, 2 (1904). doi: 10.1093/mnras/65.1.2 ADSCrossRefGoogle Scholar
  157. P.N. Mayaud, Derivation, Meaning, and Use of Geomagnetic Indices. Geophysical Monograph, vol. 22 (American Geophysical Union, Washington, 1980) CrossRefGoogle Scholar
  158. D.J. McComas, J.T. Gosling, S.J. Bame, E.J. Smith, H.V. Cane, A test of magnetic field draping induced BZ perturbations ahead of fast coronal mass ejecta. J. Geophys. Res. 94, 1465–1471 (1989). doi: 10.1029/JA094iA02p01465 ADSCrossRefGoogle Scholar
  159. R.L. McPherron, T. Terasawa, A. Nishida, Solar wind triggering of substorm expansion onset. J. Geomagn. Geoelectr. 38, 1089–1108 (1986) ADSCrossRefGoogle Scholar
  160. M.B. Moldwin, S. Ford, R. Lepping, J. Slavin, A. Szabo, Small-scale magnetic flux ropes in the solar wind. Geophys. Res. Lett. 27, 57–60 (2000). doi: 10.1029/1999GL010724 ADSCrossRefGoogle Scholar
  161. S.K. Morley, M.P. Freeman, On the association between northward turnings of the interplanetary magnetic field and substorm onsets. Geophys. Res. Lett. 34, 08104 (2007). doi: 10.1029/2006GL028891 ADSCrossRefGoogle Scholar
  162. P. Morrison, Solar origin of cosmic-ray time variations. Phys. Rev. 101, 1397–1404 (1956). doi: 10.1103/PhysRev.101.1397 ADSCrossRefGoogle Scholar
  163. C. Möstl, C.J. Farrugia, E.K.J. Kilpua, L.K. Jian, Y. Liu, J.P. Eastwood, R.A. Harrison, D.F. Webb, M. Temmer, D. Odstrcil, J.A. Davies, T. Rollett, J.G. Luhmann, N. Nitta, T. Mulligan, E.A. Jensen, R. Forsyth, B. Lavraud, C.A. de Koning, A.M. Veronig, A.B. Galvin, T.L. Zhang, B.J. Anderson, Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere. Astrophys. J. 758, 10 (2012). doi: 10.1088/0004-637X/758/1/10 ADSCrossRefGoogle Scholar
  164. T. Mulligan, C.T. Russell, J.G. Luhmann, Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. Geophys. Res. Lett. 25, 2959–2962 (1998). doi: 10.1029/98GL01302 ADSCrossRefGoogle Scholar
  165. M. Myllys, N. Partamies, L. Juusola, Latitude dependence of long-term geomagnetic activity and its solar wind drivers. Ann. Geophys. 33, 573–581 (2015). doi: 10.5194/angeo-33-573-2015 ADSCrossRefGoogle Scholar
  166. M. Myllys, E.K.J. Kilpua, B. Lavraud, T.I. Pulkkinen, Solar wind-magnetosphere coupling efficiency during ejecta and sheath-driven geomagnetic storms. J. Geophys. Res. Space Phys. 121, 4378–4396 (2016). doi: 10.1002/2016JA022407 ADSCrossRefGoogle Scholar
  167. M. Myllys, E.K.J. Kipua, B. Lavraud, Interplay of solar wind parameters and physical mechanisms producing the saturation of the cross polar cap potential. Geophys. Res. Lett. 44, 3019–3027 (2017). doi: 10.1002/2017GL072676 ADSCrossRefGoogle Scholar
  168. P.T. Newell, K. Liou, Solar wind driving and substorm triggering. J. Geophys. Res. Space Phys. 116, 03229 (2011). doi: 10.1029/2010JA016139 ADSGoogle Scholar
  169. P.T. Newell, T. Sotirelis, K. Liou, C.-I. Meng, F.J. Rich, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. Space Phys. 112, 01206 (2007). doi: 10.1029/2006JA012015 ADSGoogle Scholar
  170. H.W. Newton, A.S. Milsom, The distribution of great and small geomagnetic storms in the sunspot cycle. J. Geophys. Res. 59, 203–214 (1954). doi: 10.1029/JZ059i002p00203 ADSCrossRefGoogle Scholar
  171. N.S. Nikolaeva, Y.I. Yermolaev, I.G. Lodkina, Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams. Geomagn. Aeron. 51, 49–65 (2011). doi: 10.1134/S0016793211010099 ADSCrossRefGoogle Scholar
  172. J.T. Nolte, A.S. Krieger, A.F. Timothy, R.E. Gold, E.C. Roelof, G. Vaiana, A.J. Lazarus, J.D. Sullivan, P.S. McIntosh, Coronal holes as sources of solar wind. Sol. Phys. 46, 303–322 (1976). doi: 10.1007/BF00149859 ADSCrossRefGoogle Scholar
  173. T.P. O’Brien, R.L. McPherron, An empirical phase space analysis of ring current dynamics: solar wind control of injection and decay. J. Geophys. Res. 105, 7707–7720 (2000). doi: 10.1029/1998JA000437 ADSCrossRefGoogle Scholar
  174. D.M. Oliveira, J. Raeder, Impact angle control of interplanetary shock geoeffectiveness. J. Geophys. Res. Space Phys. 119, 8188–8201 (2014). doi: 10.1002/2014JA020275 ADSCrossRefGoogle Scholar
  175. D.M. Oliveira, J. Raeder, Impact angle control of interplanetary shock geoeffectiveness: a statistical study. J. Geophys. Res. Space Phys. 120, 4313–4323 (2015). doi: 10.1002/2015JA021147 ADSCrossRefGoogle Scholar
  176. N. Omidi, H. Zhang, D. Sibeck, D. Turner, Spontaneous hot flow anomalies at quasi-parallel shocks: 2. Hybrid simulations. J. Geophys. Res. Space Phys. 118, 173–180 (2013). doi: 10.1029/2012JA018099 ADSCrossRefGoogle Scholar
  177. A. Osmane, A.P. Dimmock, R. Naderpour, T.I. Pulkkinen, K. Nykyri, The impact of solar wind ULF Bz fluctuations on geomagnetic activity for viscous timescales during strongly northward and southward IMF. J. Geophys. Res. Space Phys. 120, 9307–9322 (2015). doi: 10.1002/2015JA021505 ADSCrossRefGoogle Scholar
  178. M.J. Owens, P.J. Cargill, C. Pagel, G.L. Siscoe, N.U. Crooker, Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res. Space Phys. 110, 01105 (2005). doi: 10.1029/2004JA010814 ADSCrossRefGoogle Scholar
  179. E. Palmerio, E.K.J. Kilpua, N.P. Savani, Planar magnetic structures in coronal mass ejection-driven sheath regions. Ann. Geophys. 34, 313–322 (2016). doi: 10.5194/angeo-34-313-2016 ADSCrossRefGoogle Scholar
  180. M. Palmroth, T.I. Pulkkinen, P. Janhunen, D.J. McComas, C.W. Smith, H.E.J. Koskinen, Role of solar wind dynamic pressure in driving ionospheric Joule heating. J. Geophys. Res. Space Phys. 109, 11302 (2004). doi: 10.1029/2004JA010529 ADSCrossRefGoogle Scholar
  181. M. Palmroth, H.E.J. Koskinen, T.I. Pulkkinen, P.K. Toivanen, P. Janhunen, S.E. Milan, M. Lester, Magnetospheric feedback in solar wind energy transfer. J. Geophys. Res. Space Phys. 115, 0010 (2010). doi: 10.1029/2010JA015746 Google Scholar
  182. W. Park, J. Lee, Y. Yi, N. Ssessanga, S. Oh, Storm sudden commencements without interplanetary shocks. J. Astron. Space Sci. 32, 181–187 (2015). doi: 10.5140/JASS.2015.32.3.181 ADSCrossRefGoogle Scholar
  183. J.H. Piddington, Interplanetary magnetic field and its control of cosmic-ray variations. Phys. Rev. 112, 589–596 (1958). doi: 10.1103/PhysRev.112.589 ADSCrossRefGoogle Scholar
  184. T. Pulkkinen, Space weather: terrestrial perspective. Living Rev. Sol. Phys. 4, 1 (2007). doi: 10.12942/lrsp-2007-1 ADSCrossRefGoogle Scholar
  185. T.I. Pulkkinen, A.P. Dimmock, A. Osmane, K. Nykyri, Solar wind energy input to the magnetosheath and at the magnetopause. Geophys. Res. Lett. 42, 4723–4730 (2015). doi: 10.1002/2015GL064226 ADSCrossRefGoogle Scholar
  186. J. Raeder, G. Lu, Polar cap potential saturation during large geomagnetic storms. Adv. Space Res. 36, 1804–1808 (2005). doi: 10.1016/j.asr.2004.05.010 ADSCrossRefGoogle Scholar
  187. P.H. Reiff, R.W. Spiro, T.W. Hill, Dependence of polar cap potential drop on interplanetary parameters. J. Geophys. Res. 86, 7639–7648 (1981). doi: 10.1029/JA086iA09p07639 ADSCrossRefGoogle Scholar
  188. I.G. Richardson, H.V. Cane, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties. Sol. Phys. 264, 189–237 (2010). doi: 10.1007/s11207-010-9568-6 ADSCrossRefGoogle Scholar
  189. I.G. Richardson, H.V. Cane, Solar wind drivers of geomagnetic storms during more than four solar cycles. J. Space Weather Space Clim. 2(27), 01 (2012). doi: 10.1051/swsc/2012001 Google Scholar
  190. I.G. Richardson, D.F. Webb, J. Zhang, D.B. Berdichevsky, D.A. Biesecker, J.C. Kasper, R. Kataoka, J.T. Steinberg, B.J. Thompson, C.-C. Wu, A.N. Zhukov, Major geomagnetic storms (\(\mbox{Dst} \leq -100~\mbox{nT}\)) generated by corotating interaction regions. J. Geophys. Res. Space Phys. 111, 0709 (2006). doi: 10.1029/2005JA011476 Google Scholar
  191. P. Riley, R.M. Caplan, J. Giacalone, D. Lario, Y. Liu, Properties of the fast forward shock driven by the July 23 2012 extreme coronal mass ejection. Astrophys. J. 819, 57 (2016). doi: 10.3847/0004-637X/819/1/57 ADSCrossRefGoogle Scholar
  192. A.P. Rouillard, N.R. Sheeley Jr., T.J. Cooper, J.A. Davies, B. Lavraud, E.K.J. Kilpua, R.M. Skoug, J.T. Steinberg, A. Szabo, A. Opitz, J.-A. Sauvaud, The solar origin of small interplanetary transients. Astrophys. J. 734, 7 (2011). doi: 10.1088/0004-637X/734/1/7 ADSCrossRefGoogle Scholar
  193. A. Ruffenach, B. Lavraud, C.J. Farrugia, P. Démoulin, S. Dasso, M.J. Owens, J.-A. Sauvaud, A.P. Rouillard, A. Lynnyk, C. Foullon, N.P. Savani, J.G. Luhmann, A.B. Galvin, Statistical study of magnetic cloud erosion by magnetic reconnection. J. Geophys. Res. Space Phys. 120, 43–60 (2015). doi: 10.1002/2014JA020628 ADSCrossRefGoogle Scholar
  194. C.T. Russell, R.L. McPherron, Semiannual variation of geomagnetic activity. J. Geophys. Res. 78, 92 (1973). doi: 10.1029/JA078i001p00092 ADSCrossRefGoogle Scholar
  195. C.T. Russell, L.K. Jian, X. Blanco-Cano, J.G. Luhmann, STEREO observations of upstream and downstream waves at low Mach number shocks. Geophys. Res. Lett. 36, 03106 (2009). doi: 10.1029/2008GL036991 ADSCrossRefGoogle Scholar
  196. C.T. Russell, R.A. Mewaldt, J.G. Luhmann, G.M. Mason, T.T. von Rosenvinge, C.M.S. Cohen, R.A. Leske, R. Gomez-Herrero, A. Klassen, A.B. Galvin, K.D.C. Simunac, The very unusual interplanetary coronal mass ejection of 2012 July 23: a blast wave mediated by solar energetic particles. Astrophys. J. 770, 38 (2013). doi: 10.1088/0004-637X/770/1/38 ADSCrossRefGoogle Scholar
  197. T. Saemundsson, Statistics of geomagnetic storms and solar activity. Mon. Not. R. Astron. Soc. 123, 299 (1962). doi: 10.1093/mnras/123.4.299 ADSCrossRefGoogle Scholar
  198. M.D. Salas, The curious events leading to the theory of shock waves. Shock Waves 16, 477–487 (2007). doi: 10.1007/s00193-007-0084-z ADSzbMATHCrossRefGoogle Scholar
  199. A.A. Samsonov, D.G. Sibeck, J. Imber, MHD simulation for the interaction of an interplanetary shock with the Earth’s magnetosphere. J. Geophys. Res. Space Phys. 112, 12220 (2007). doi: 10.1029/2007JA012627 ADSGoogle Scholar
  200. A.A. Samsonov, V.A. Sergeev, M.M. Kuznetsova, D.G. Sibeck, Asymmetric magnetospheric compressions and expansions in response to impact of inclined interplanetary shock. Geophys. Res. Lett. 42, 4716–4722 (2015). doi: 10.1002/2015GL064294 ADSCrossRefGoogle Scholar
  201. R. Schwenn, Direct correlations between coronal transients and interplanetary disturbances. Space Sci. Rev. 34, 85–99 (1983). doi: 10.1007/BF00221199 ADSCrossRefGoogle Scholar
  202. R. Schwenn, A. dal Lago, E. Huttunen, W.D. Gonzalez, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033–1059 (2005). doi: 10.5194/angeo-23-1033-2005 ADSCrossRefGoogle Scholar
  203. V.A. Sergeev, R.J. Pellinen, T.I. Pulkkinen, Steady magnetospheric convection: a review of recent results. Space Sci. Rev. 75, 551–604 (1996). doi: 10.1007/BF00833344 ADSCrossRefGoogle Scholar
  204. N.R. Sheeley Jr., A.P. Rouillard, Tracking streamer blobs into the heliosphere. Astrophys. J. 715, 300–309 (2010). doi: 10.1088/0004-637X/715/1/300 ADSCrossRefGoogle Scholar
  205. N.R. Sheeley Jr., R.A. Howard, D.J. Michels, M.J. Koomen, R. Schwenn, K.H. Muehlhaeuser, H. Rosenbauer, Coronal mass ejections and interplanetary shocks. J. Geophys. Res. 90, 163–175 (1985). doi: 10.1029/JA090iA01p00163 ADSCrossRefGoogle Scholar
  206. N.R. Sheeley, Y.-M. Wang, S.H. Hawley, G.E. Brueckner, K.P. Dere, R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, S.E. Paswaters, D.G. Socker, O.C. St. Cyr, D. Wang, P.L. Lamy, A. Llebaria, R. Schwenn, G.M. Simnett, S. Plunkett, D.A. Biesecker, Measurements of flow speeds in the corona between 2 and 30 \(R_{\odot}\). Astrophys. J. 484, 472–478 (1997) ADSCrossRefGoogle Scholar
  207. J.-H. Shue, P. Song, C.T. Russell, J.T. Steinberg, J.K. Chao, G. Zastenker, O.L. Vaisberg, S. Kokubun, H.J. Singer, T.R. Detman, H. Kawano, Magnetopause location under extreme solar wind conditions. J. Geophys. Res. 103, 17691–17700 (1998). doi: 10.1029/98JA01103 ADSCrossRefGoogle Scholar
  208. G. Siscoe, D. Odstrcil, Ways in which ICME sheaths differ from magnetosheaths. J. Geophys. Res. Space Phys. 113, 0007 (2008). doi: 10.1029/2008JA013142 Google Scholar
  209. G. Siscoe, P.J. MacNeice, D. Odstrcil, East-West asymmetry in coronal mass ejection geoeffectiveness. Space Weather 5, 04002 (2007). doi: 10.1029/2006SW000286 ADSCrossRefGoogle Scholar
  210. E.J. Smith, J.A. Slavin, R.D. Zwickl, S.J. Bame, Shocks and storm sudden commencements, in Solar Wind Magnetosphere Coupling, ed. by Y. Kamide, J.A. Slavin. Astrophysics and Space Science Library, vol. 126 (1986), pp. 345–365 CrossRefGoogle Scholar
  211. K. Snekvik, E.I. Tanskanen, E.K.J. Kilpua, An automated identification method for Alfvénic streams and their geoeffectiveness. J. Geophys. Res. Space Phys. 118, 5986–5998 (2013). doi: 10.1002/jgra.50588 ADSCrossRefGoogle Scholar
  212. C.P. Sonett, D.S. Colburn, L. Davis, E.J. Smith, P.J. Coleman, Evidence for a collision-free magnetohydrodynamic shock in interplanetary space. Phys. Rev. Lett. 13, 153–156 (1964). doi: 10.1103/PhysRevLett.13.153 ADSCrossRefGoogle Scholar
  213. P. Subramanian, K.P. Dere, Source regions of coronal mass ejections. Astrophys. J. 561, 372–395 (2001). doi: 10.1086/323213 ADSCrossRefGoogle Scholar
  214. E.I. Tanskanen, J.A. Slavin, A.J. Tanskanen, A. Viljanen, T.I. Pulkkinen, H.E.J. Koskinen, A. Pulkkinen, J. Eastwood, Magnetospheric substorms are strongly modulated by interplanetary high-speed streams. Geophys. Res. Lett. 32, 16104 (2005). doi: 10.1029/2005GL023318 ADSCrossRefGoogle Scholar
  215. M. Temmer, N.V. Nitta, Interplanetary propagation behavior of the fast coronal mass ejection on 23 July 2012. Sol. Phys. 290, 919–932 (2015). doi: 10.1007/s11207-014-0642-3 ADSCrossRefGoogle Scholar
  216. T. Terasawa, M. Fujimoto, T. Mukai, I. Shinohara, Y. Saito, T. Yamamoto, S. Machida, S. Kokubun, A.J. Lazarus, J.T. Steinberg, R.P. Lepping, Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration. Geophys. Res. Lett. 24, 935–938 (1997). doi: 10.1029/96GL04018 ADSCrossRefGoogle Scholar
  217. K. Toman, Identification of M-regions on the Sun. Nature 181, 641–642 (1958). doi: 10.1038/181641a0 ADSCrossRefGoogle Scholar
  218. S. Tomczyk, S.W. McIntosh, Time-distance seismology of the solar corona with CoMP. Astrophys. J. 697, 1384–1391 (2009). doi: 10.1088/0004-637X/697/2/1384 ADSCrossRefGoogle Scholar
  219. R. Tousey, The solar corona, in Space Research Conference, ed. by M.J. Rycroft, S.K. Runcorn. Space Research Conference, vol. 2 (1973), pp. 713–730 Google Scholar
  220. R.A. Treumann, Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks. Astron. Astrophys. Rev. 17, 409–535 (2009). doi: 10.1007/s00159-009-0024-2 ADSCrossRefGoogle Scholar
  221. B.T. Tsurutani, W.D. Gonzalez, The cause of high-intensity long-duration continuous AE activity (HILDCAAS)—interplanetary Alfven wave trains. Planet. Space Sci. 35, 405–412 (1987). doi: 10.1016/0032-0633(87)90097-3 ADSCrossRefGoogle Scholar
  222. B.T. Tsurutani, E.J. Smith, W.D. Gonzalez, F. Tang, S.I. Akasofu, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J. Geophys. Res. 93, 8519–8531 (1988). doi: 10.1029/JA093iA08p08519 ADSCrossRefGoogle Scholar
  223. B.T. Tsurutani, Y.T. Lee, W.D. Gonzalez, F. Tang, Great magnetic storms. Geophys. Res. Lett. 19, 73–76 (1992). doi: 10.1029/91GL02783 ADSCrossRefGoogle Scholar
  224. B.T. Tsurutani, W.D. Gonzalez, A.L.C. Gonzalez, F. Tang, J.K. Arballo, M. Okada, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100, 21717–21734 (1995). doi: 10.1029/95JA01476 ADSCrossRefGoogle Scholar
  225. B.T. Tsurutani, X.-Y. Zhou, W.D. Gonzalez, A lack of substorm expansion phases during magnetic storms induced by magnetic clouds, in Disturbances in Geospace: The Storm-Substorm Relationship, ed. by A. Surjalal Sharma, Y. Kamide, G.S. Lakhina. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 142 (2003), p. 23. doi: 10.1029/142GM03 CrossRefGoogle Scholar
  226. B.T. Tsurutani, W.D. Gonzalez, X.-Y. Zhou, R.P. Lepping, V. Bothmer, Properties of slow magnetic clouds. J. Atmos. Sol.-Terr. Phys. 66, 147–151 (2004). doi: 10.1016/j.jastp.2003.09.007 ADSCrossRefGoogle Scholar
  227. B.T. Tsurutani, W.D. Gonzalez, A.L.C. Gonzalez, F.L. Guarnieri, N. Gopalswamy, M. Grande, Y. Kamide, Y. Kasahara, G. Lu, I. Mann, R. McPherron, F. Soraas, V. Vasyliunas, Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. Space Phys. 111, 0701 (2006). doi: 10.1029/2005JA011273 Google Scholar
  228. B.T. Tsurutani, R. Hajra, E. Echer, J.W. Gjerloev, Extremely intense (\(\mbox{SML} \leq- 2500~\mbox{nT}\)) substorms: isolated events that are externally triggered? Ann. Geophys. 33, 519–524 (2015). doi: 10.5194/angeo-33-519-2015 ADSCrossRefGoogle Scholar
  229. L. Turc, D. Fontaine, P. Savoini, R. Modolo, 3D hybrid simulations of the interaction of a magnetic cloud with a bow shock. J. Geophys. Res. Space Phys. 120, 6133–6151 (2015). doi: 10.1002/2015JA021318 ADSCrossRefGoogle Scholar
  230. L. Turc, C.P. Escoubet, D. Fontaine, E.K.J. Kilpua, S. Enestam, Cone angle control of the interaction of magnetic clouds with the Earth’s bow shock. Geophys. Res. Lett. 43, 4781–4789 (2016). doi: 10.1002/2016GL068818 ADSCrossRefGoogle Scholar
  231. N.E. Turner, E.J. Mitchell, D.J. Knipp, B.A. Emery, Energetics of magnetic storms driven by corotating interaction regions: a study of geoeffectiveness, in Recurrent Magnetic Storms: Corotating Solar Wind, ed. by R. McPherron, W. Gonzalez, G. Lu, H.A. José, S. Natchimuthukonar Gopalswamy. Geophysical Monograph Series, vol. 167 (2006, American Geophysical Union, Washington), p. 113. doi: 10.1029/167GM11 CrossRefGoogle Scholar
  232. N.E. Turner, W.D. Cramer, S.K. Earles, B.A. Emery, Geoefficiency and energy partitioning in CIR-driven and CME-driven storms. J. Atmos. Sol.-Terr. Phys. 71, 1023–1031 (2009). doi: 10.1016/j.jastp.2009.02.005 ADSCrossRefGoogle Scholar
  233. M. Vandas, S. Fischer, M. Dryer, Z. Smith, T. Detman, A. Geranios, MHD simulation of an interaction of a shock wave with a magnetic cloud. J. Geophys. Res. 102, 22295–22300 (1997). doi: 10.1029/97JA01675 ADSCrossRefGoogle Scholar
  234. V.M. Vasyliunas, Theoretical models of magnetic field line merging. I. Rev. Geophys. Space Phys. 13, 303–336 (1975). doi: 10.1029/RG013i001p00303 ADSCrossRefGoogle Scholar
  235. R. von Steiger, Space physics—grand challenges for the 21st century. Front. Phys. 1, 6 (2013). doi: 10.3389/fphy.2013.00006 Google Scholar
  236. R. von Steiger, T.H. Zurbuchen, A. Kilchenmann, Latitude distribution of interplanetary coronal mass ejections during solar maximum, in Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, ed. by B. Fleck, T.H. Zurbuchen, H. Lacoste. ESA Special Publication, vol. 592 (2005), p. 317 Google Scholar
  237. M.-T. Walach, S.E. Milan, Are steady magnetospheric convection events prolonged substorms? J. Geophys. Res. Space Phys. 120, 1751–1758 (2015). doi: 10.1002/2014JA020631 ADSCrossRefGoogle Scholar
  238. B.M. Walsh, D.G. Sibeck, Y. Wang, D.H. Fairfield, Dawn-dusk asymmetries in the Earth’s magnetosheath. J. Geophys. Res. Space Phys. 117, 12211 (2012). doi: 10.1029/2012JA018240 ADSGoogle Scholar
  239. Y.M. Wang, P.Z. Ye, S. Wang, G.P. Zhou, J.X. Wang, A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. J. Geophys. Res. Space Phys. 107, 1340 (2002). doi: 10.1029/2002JA009244 ADSCrossRefGoogle Scholar
  240. Y.M. Wang, P.Z. Ye, S. Wang, Multiple magnetic clouds: several examples during March–April 2001. J. Geophys. Res. Space Phys. 108, 1370 (2003). doi: 10.1029/2003JA009850 ADSCrossRefGoogle Scholar
  241. Y.-M. Wang, N.R. Sheeley Jr., N.B. Rich, Coronal pseudostreamers. Astrophys. J. 658, 1340–1348 (2007). doi: 10.1086/511416 ADSCrossRefGoogle Scholar
  242. C. Wang, J.B. Liu, H. Li, Z.H. Huang, J.D. Richardson, J.R. Kan, Geospace magnetic field responses to interplanetary shocks. J. Geophys. Res. Space Phys. 114, 05211 (2009). doi: 10.1029/2008JA013794 ADSCrossRefGoogle Scholar
  243. Y. Wang, Q. Zhang, J. Liu, C. Shen, F. Shen, Z. Yang, T. Zic, B. Vrsnak, D.F. Webb, R. Liu, S. Wang, J. Zhang, Q. Hu, B. Zhuang, On the propagation of a geoeffective coronal mass ejection during 15–17 March 2015. J. Geophys. Res. Space Phys. 121, 7423–7434 (2016). doi: 10.1002/2016JA022924 ADSCrossRefGoogle Scholar
  244. D.F. Webb, T.A. Howard, Coronal mass ejections: observations. Living Rev. Sol. Phys. 9, 3 (2012). doi: 10.1007/lrsp-2012-3. ADSCrossRefGoogle Scholar
  245. D.F. Webb, E.W. Cliver, N.U. Crooker, O.C.S. Cry, B.J. Thompson, Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms. J. Geophys. Res. 105, 7491–7508 (2000). doi: 10.1029/1999JA000275 ADSCrossRefGoogle Scholar
  246. D.F. Webb, C. Möstl, B.V. Jackson, M.M. Bisi, T.A. Howard, T. Mulligan, E.A. Jensen, L.K. Jian, J.A. Davies, C.A. de Koning, Y. Liu, M. Temmer, J.M. Clover, C.J. Farrugia, R.A. Harrison, N. Nitta, D. Odstrcil, S.J. Tappin, H.-S. Yu, Heliospheric imaging of 3D density structures during the multiple coronal mass ejections of late July to early August 2010. Sol. Phys. 285, 317–348 (2013). doi: 10.1007/s11207-013-0260-5 ADSCrossRefGoogle Scholar
  247. R.F. Wimmer-Schweingruber, R. von Steiger, R. Paerli, Solar wind stream interfaces in corotating interaction regions: SWICS/Ulysses results. J. Geophys. Res. 102, 17407–17418 (1997). doi: 10.1029/97JA00951 ADSCrossRefGoogle Scholar
  248. R.F. Wimmer-Schweingruber, N.U. Crooker, A. Balogh, V. Bothmer, R.J. Forsyth, P. Gazis, J.T. Gosling, T. Horbury, A. Kilchenmann, I.G. Richardson, J.D. Richardson, P. Riley, L. Rodriguez, R.V. Steiger, P. Wurz, T.H. Zurbuchen, Understanding interplanetary coronal mass ejection signatures. Space Sci. Rev. 123, 177–216 (2006). doi: 10.1007/s11214-006-9017-x. Report of Working Group B ADSCrossRefGoogle Scholar
  249. Y.Q. Xie, P.B. Zuo, X.S. Feng, Y. Zhang, Properties of solar wind dynamic pressure pulses at 1 AU during the deep minimum between solar cycles 23 and 24. Sol. Phys. 290, 1835–1849 (2015). doi: 10.1007/s11207-015-0700-5 ADSCrossRefGoogle Scholar
  250. Y.I. Yermolaev, N.S. Nikolaeva, I.G. Lodkina, M.Y. Yermolaev, Specific interplanetary conditions for CIR-, sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann. Geophys. 28, 2177–2186 (2010). doi: 10.5194/angeo-28-2177-2010 ADSCrossRefGoogle Scholar
  251. W. Yu, C.J. Farrugia, N. Lugaz, A.B. Galvin, E.K.J. Kilpua, H. Kucharek, C. Möstl, M. Leitner, R.B. Torbert, K.D.C. Simunac, J.G. Luhmann, A. Szabo, L.B. Wilson, K.W. Ogilvie, J.-A. Sauvaud, A statistical analysis of properties of small transients in the solar wind 2007-2009: STEREO and wind observations. J. Geophys. Res. Space Phys. 119, 689–708 (2014). doi: 10.1002/2013JA019115 ADSCrossRefGoogle Scholar
  252. R. Zelwer, P.C.B. Fernando, S.H. Ward, Interplanetary magnetic field data and corresponding geomagnetic effects for the storm of October 7, 1962. J. Geophys. Res. 72, 3471–3482 (1967). doi: 10.1029/JZ072i013p03471 ADSCrossRefGoogle Scholar
  253. J. Zhang, I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, J.C. Kasper, N.V. Nitta, W. Poomvises, B.J. Thompson, C.-C. Wu, S. Yashiro, A.N. Zhukov, Solar and interplanetary sources of major geomagnetic storms (\(\mbox{Dst} \leq -100~\mbox{nT}\)) during 1996–2005. J. Geophys. Res. Space Phys. 112, 10102 (2007). doi: 10.1029/2007JA012321 ADSCrossRefGoogle Scholar
  254. Y. Zhang, W. Sun, X.S. Feng, C.S. Deehr, C.D. Fry, M. Dryer, Statistical analysis of corotating interaction regions and their geoeffectiveness during solar cycle 23. J. Geophys. Res. Space Phys. 113, 08106 (2008). doi: 10.1029/2008JA013095 ADSCrossRefGoogle Scholar
  255. H. Zhang, D.G. Sibeck, Q.-G. Zong, N. Omidi, D. Turner, L.B.N. Clausen, Spontaneous hot flow anomalies at quasi-parallel shocks: 1. observations. J. Geophys. Res. Space Phys. 118, 3357–3363 (2013). doi: 10.1002/jgra.50376 ADSCrossRefGoogle Scholar
  256. J.J. Zhang, C. Wang, T.R. Sun, C.M. Liu, K.R. Wang, GIC due to storm sudden commencement in low-latitude high-voltage power network in China: observation and simulation. Space Weather 13, 643–655 (2015). doi: 10.1002/2015SW001263 ADSCrossRefGoogle Scholar
  257. L. Zhao, T.H. Zurbuchen, L.A. Fisk, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, 14104 (2009). doi: 10.1029/2009GL039181 ADSCrossRefGoogle Scholar
  258. P. Zuo, X. Feng, Y. Xie, Y. Wang, X. Xu, A statistical survey of dynamic pressure pulses in the solar wind based on WIND observations. Astrophys. J. 808, 83 (2015). doi: 10.1088/0004-637X/808/1/83 ADSCrossRefGoogle Scholar
  259. T.H. Zurbuchen, I.G. Richardson, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31–43 (2006). doi: 10.1007/s11214-006-9010-4 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • E. K. J. Kilpua
    • 1
    Email author
  • A. Balogh
    • 2
  • R. von Steiger
    • 3
  • Y. D. Liu
    • 4
  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Imperial College LondonLondonUK
  3. 3.International Space Science InstituteBernSwitzerland
  4. 4.State Key Laboratory of Space Weather, National Space Science CenterChinese Academy of SciencesBeijingChina

Personalised recommendations