Skip to main content
Log in

Interplanetary Propagation Behavior of the Fast Coronal Mass Ejection on 23 July 2012

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The fast coronal mass ejection (CME) on 23 July 2012 caused attention because of its extremely short transit time from the Sun to 1 AU, which was shorter than 21 h. In situ data from STEREO-A revealed the arrival of a fast forward shock with a speed of more than 2200 km s−1 followed by a magnetic structure moving with almost 1900 km s−1. We investigate the propagation behavior of the CME shock and magnetic structure with the aim to reproduce the short transit time and high impact speed as derived from in situ data. We carefully measured the 3D kinematics of the CME using the graduated cylindrical shell model and obtained a maximum speed of 2580±280 km s−1 for the CME shock and 2270±420 km s−1 for its magnetic structure. Based on the 3D kinematics, the drag-based model (DBM) reproduces the observational data reasonably well. To successfully simulate the CME shock, the ambient flow speed needs to have an average value close to the slow solar wind speed (450 km s−1), and the initial shock speed at a distance of 30 R should not exceed ≈ 2300 km s−1, otherwise it would arrive much too early at STEREO-A. The model results indicate that an extremely small aerodynamic drag force is exerted on the shock, smaller by one order of magnitude than average. As a consequence, the CME hardly decelerates in interplanetary space and maintains its high initial speed. The low aerodynamic drag can only be reproduced when the density of the ambient solar wind flow, in which the fast CME propagates, is decreased to ρ sw=1 – 2 cm−3 at the distance of 1 AU. This result is consistent with the preconditioning of interplanetary space by a previous CME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. As the shock and magnetic structure can be clearly distinguished starting from COR2 FoV, the shock acceleration profile is unreliable and was not used for further analysis.

  2. According to statistics, the CME acceleration duration and the peak acceleration value are closely related parameters that are inversely proportional.

References

  • Baker, D.N., Li, X., Pulkkinen, A., Ngwira, C.M., Mays, M.L., Galvin, A.B., Simunac, K.D.C.: 2013, A major solar eruptive event in July 2012: Defining extreme space weather scenarios. Space Weather 11, 585. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Muhr, N., Kienreich, I., Utz, D., Vršnak, B.: 2011, Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. Astrophys. J. 738, 191. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys. J. 755, 44. DOI . ADS .

    Article  ADS  Google Scholar 

  • Billings, D.E.: 1966, A Guide to the Solar Corona, Academic Press, New York, 150. ADS .

    Google Scholar 

  • Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cargill, P.J., Chen, J., Spicer, D.S., Zalesak, S.T.: 1996, Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma. J. Geophys. Res. 101, 4855. DOI . ADS .

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, SOHO: The Solar and Heliospheric Observatory. Space Sci. Rev. 72, 81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., Möbius, E., Lee, M.A., Boehm, M., Carroll, J., Crawshaw, A., Conti, M., Demaine, P., Ellis, S., Gaidos, J.A., Googins, J., Granoff, M., Gustafson, A., Heirtzler, D., King, B., Knauss, U., Levasseur, J., Longworth, S., Singer, K., Turco, S., Vachon, P., Vosbury, M., Widholm, M., Blush, L.M., Karrer, R., Bochsler, P., Daoudi, H., Etter, A., Fischer, J., Jost, J., Opitz, A., Sigrist, M., Wurz, P., Klecker, B., Ertl, M., Seidenschwang, E., Wimmer-Schweingruber, R.F., Koeten, M., Thompson, B., Steinfeld, D.: 2008, The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev. 136, 437. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2008, Solar connections of geoeffective magnetic structures. J. Atmos. Solar-Terr. Phys. 70, 2078. DOI . ADS .

  • Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kontar, E.P., Piana, M., Massone, A.M., Emslie, A.G., Brown, J.C.: 2004, Generalized regularization techniques with constraints for the analysis of solar bremsstrahlung X-ray spectra. Solar Phys. 225, 293. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lavraud, B., Ruffenach, A., Rouillard, A.P., Kajdic, P., Manchester, W.B., Lugaz, N.: 2014, Geo-effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection. J. Geophys. Res. Space Sci. 119, 26. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 AU. Solar Phys. 183, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y.D., Luhmann, J.G., Lugaz, N., Möstl, C., Davies, J.A., Bale, S.D., Lin, R.P.: 2013, On Sun-to-Earth propagation of coronal mass ejections. Astrophys. J. 769, 45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y.D., Luhmann, J.G., Kajdič, P., Kilpua, E.K.J., Lugaz, N., Nitta, N.V., Möstl, C., Lavraud, B., Bale, S.D., Farrugia, C.J., Galvin, A.B.: 2014, Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nature Commun. 5, 3481. DOI . ADS .

    ADS  Google Scholar 

  • Lugaz, N., Farrugia, C.J., Davies, J.A., Möstl, C., Davis, C.J., Roussev, I.I., Temmer, M.: 2012, The deflection of the two interacting coronal mass ejections of 2010 May 23 – 24 as revealed by combined in-situ measurements and heliospheric imaging. Astrophys. J. 759, 68. DOI . ADS .

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., Bale, S.D., Sauvaud, J.-A., Aoustin, C., Mewaldt, R.A., Cummings, A.C., Stone, E.C., Davis, A.J., Cook, W.R., Kecman, B., Wiedenbeck, M.E., von Rosenvinge, T., Acuna, M.H., Reichenthal, L.S., Shuman, S., Wortman, K.A., Reames, D.V., Mueller-Mellin, R., Kunow, H., Mason, G.M., Walpole, P., Korth, A., Sanderson, T.R., Russell, C.T., Gosling, J.T.: 2008, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 136, 117. DOI . ADS .

    Article  ADS  Google Scholar 

  • Möstl, C., Davies, J.A.: 2013, Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts. Solar Phys. 285, 411. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ngwira, C.M., Pulkkinen, A., Leila Mays, M., Kuznetsova, M.M., Galvin, A.B., Simunac, K., Baker, D.N., Li, X., Zheng, Y., Glocer, A.: 2013, Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed? Space Weather 11, 671. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nitta, N.V., Aschwanden, M.J., Boerner, P.F., Freeland, S.L., Lemen, J.R., Wuelser, J.-P.: 2013, Soft X-ray fluxes of major flares far behind the limb as estimated using STEREO EUV images. Solar Phys. 288, 241. DOI . ADS .

    Article  ADS  Google Scholar 

  • Odstrčil, D., Pizzo, V.J.: 1999, Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt. J. Geophys. Res. 104, 483. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rouillard, A.P., Lavraud, B., Sheeley, N.R., Davies, J.A., Burlaga, L.F., Savani, N.P., Jacquey, C., Forsyth, R.J.: 2010, White light and in situ comparison of a forming merged interaction region. Astrophys. J. 719, 1385. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ruffenach, A., Lavraud, B., Owens, M.J., Sauvaud, J.-A., Savani, N.P., Rouillard, A.P., Démoulin, P., Foullon, C., Opitz, A., Fedorov, A., Jacquey, C.J., Génot, V., Louarn, P., Luhmann, J.G., Russell, C.T., Farrugia, C.J., Galvin, A.B.: 2012, Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. J. Geophys. Res. Space Sci. 117, A09101. DOI . ADS .

    ADS  Google Scholar 

  • Russell, C.T., Mewaldt, R.A., Luhmann, J.G., Mason, G.M., von Rosenvinge, T.T., Cohen, C.M.S., Leske, R.A., Gomez-Herrero, R., Klassen, A., Galvin, A.B., Simunac, K.D.C.: 2013, The very unusual interplanetary coronal mass ejection of 2012 July 23: A blast wave mediated by solar energetic particles. Astrophys. J. 770, 38. DOI . ADS .

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A.M., Vršnak, B., Rybák, J., Gömöry, P., Stoiser, S., Maričić, D.: 2008, Acceleration in fast halo CMEs and synchronized flare HXR bursts. Astrophys. J. Lett. 673, L95. DOI . ADS .

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A.M., Kontar, E.P., Krucker, S., Vršnak, B.: 2010, Combined STEREO/RHESSI study of coronal mass ejection acceleration and particle acceleration in solar flares. Astrophys. J. 712, 1410. DOI . ADS .

    Article  ADS  Google Scholar 

  • Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thernisien, A.: 2011, Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys. J. Suppl. 194, 33. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J. 652, 763. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Subramanian, P., Dere, K.P., Howard, R.A.: 2000, Large-Angle Spectrometric Coronagraph measurements of the energetics of coronal mass ejections. Astrophys. J. 534, 456. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G.: 2011, Erratum: “Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle”. Astrophys. J. 730, 59. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T.: 2007, Transit times of interplanetary coronal mass ejections and the solar wind speed. Astron. Astrophys. 472, 937. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Maričić, D., Stanger, A.L., Veronig, A.M., Temmer, M., Roša, D.: 2007, Acceleration phase of coronal mass ejections: I. Temporal and spatial scales. Solar Phys. 241, 85. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T., Falkenberg, T.V., Möstl, C., Vennerstrom, S., Vrbanec, D.: 2010, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: The drag-based model. Solar Phys. 285, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Temmer, M., Žic, T., Taktakishvili, A., Dumbović, M., Möstl, C., Veronig, A.M., Mays, M.L., Odstrčil, D.: 2014, Heliospheric propagation of coronal mass ejections: Comparison of numerical WSA-ENLIL+Cone model and analytical drag-based model. Astrophys. J. Suppl. 213, 21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P.: 2006, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649, 1100. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.T. acknowledges the Austrian Science Fund (FWF): P20145-N16. N.V.N’s work has been supported by NSF grant AGS-1259549, NASA AIA contract NNG04EA00C, and the NASA STEREO mission under NRL Contract No. N00173-02-C-2035. We appreciate the provision of PLASTIC data supported by NASA Grant NNX13AP52G. We thank Y.D. Liu for valuable comments on the manuscript and J.G. Luhmann, as well as Y. Li and B.J. Lynch, for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Temmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temmer, M., Nitta, N.V. Interplanetary Propagation Behavior of the Fast Coronal Mass Ejection on 23 July 2012. Sol Phys 290, 919–932 (2015). https://doi.org/10.1007/s11207-014-0642-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0642-3

Keywords

Navigation