Skip to main content
Log in

Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

A comprehensive review is given of the theory and properties of nonrelativistic shocks in hot collisionless plasmas—in view of their possible application in astrophysics. Understanding non-relativistic collisionless shocks is an indispensable step towards a general account of collisionless astrophysical shocks of high Mach number and of their effects in dissipating flow-energy, in heating matter, in accelerating particles to high—presumably cosmic-ray—energies, and in generating detectable radiation from radio to X-rays. Non-relativistic shocks have Alfvénic Mach numbers \({{\fancyscript{M}}_A\ll \sqrt{m_i/m_e}(\omega_{pe}/\omega_{ce})}\), where m i /m e is the ion-to-electron mass ratio, and ω pe , ω ce are the electron plasma and cyclotron frequencies, respectively. Though high, the temperatures of such shocks are limited (in energy units) to T < m e c 2. This means that particle creation is inhibited, classical theory is applicable, and reaction of radiation on the dynamics of the shock can be neglected. The majority of such shocks are supercritical, meaning that non-relativistic shocks are unable to self-consistently produce sufficient dissipation and, thus, to sustain a stationary shock transition. As a consequence, supercritical shocks act as efficient particle reflectors. All these shocks are microscopically thin, with shock-transition width of the order of the ion inertial length λ i = c/ω pi (with ω pi the ion plasma frequency). The full theory of such shocks is developed, and the different possible types of shocks are defined. Since all collisionless shocks are magnetised, the most important distinction is between quasi-perpendicular and quasi-parallel shocks. The former propagate about perpendicularly, the latter roughly parallel to the upstream magnetic field. Their manifestly different behaviours are described in detail. In particular, although both types of shocks are non-stationary, they have completely different reformation cycles. From numerical full-particle simulations it becomes evident that, on ion-inertial scales close to the shock transition, all quasi-parallel collisionless supercritical shocks are locally quasi-perpendicular. This property is of vital importance for the particle dynamics near the quasi-parallel shock front. Considerable interest focusses on particle acceleration and the generation of radiation. Radiation from non-relativistic shocks results mainly in wave–wave interactions among various plasma waves. Non-thermal charged particles can be further accelerated to high energies by a Fermi-like mechanism. The important question is whether the shock can pre-accelerate shock-reflected particles to sufficiently high energies in order to create the seed-population of the non-thermal particles required by the Fermi mechanism. Based on preliminary full-particle numerical simulations, this question is answered affirmatively. Such simulations provide ample evidence that collisionless shocks with high-Mach numbers—even when non-relativistic—could probably by themselves produce the energetic seed-particle population for the Fermi-process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amano T, Hoshino M (2007) Electron injection at high Mach number quasi-perpendicular shocks: surfing and drift acceleration. Astrophys J 661: 190–202

    Article  ADS  Google Scholar 

  • Bale SD, Mozer FS (2007) Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock. Phys Rev Lett 98: 205001. doi:10.1103/PhysRevLett.98.205001

    Article  ADS  Google Scholar 

  • Bale SD et al (2002) Electrostatic turbulence and Debye-scale structures associated with electron thermalization at collisionless shocks. Astrophys J 575: L25–L28

    Article  ADS  Google Scholar 

  • Bale SD, Mozer FS, Horbury TS (2003) Density-transition scale at quasiperpendicular collisionless shocks. Phys Rev Lett 91: 265004

    Article  ADS  Google Scholar 

  • Balikhin MA, Krasnoselskikh V, Gedalin MA (1995) The scales in quasiperpendicular shocks. Adv Space Res 15: 247

    Article  ADS  Google Scholar 

  • Balikhin MA et al (2005) Ion sound wave packets at the quasiperpendicular shock front. Geophys Res Lett 32: L24106. doi:10.1029/2005GL024660

    Article  ADS  Google Scholar 

  • Balogh A, Riley P (2005) Overview of heliospheric shocks. In: Jokipii JR, Sonett CP, Giampapa MS (eds) Cosmic winds and the heliosphere. The University of Arizona Press, Tucson, pp 359–388

    Google Scholar 

  • Balogh A, Klein KL, Treumann RA (2009) The physics of shock waves in collisionless space plasmas. ISSI SR-10, ESA-ESTEC, Noordwijk, The Netherlands, pp 1–500

  • Baumjohann W, Treumann RA (1996) Basic space plasma physics. Imperial College Press, London

    Google Scholar 

  • Behlke R et al (2003) Multi-point electric field measurements of short large-amplitude magnetic structures (SLAMS) at the Earth’s quasi-parallel bow shock. Geophys Res Lett 30: 1177. doi:10.1029/2002GL015871

    Article  ADS  Google Scholar 

  • Behlke R et al (2004) Solitary structures associated with short large-amplitude magnetic structures (SLAMS) upstream of the Earth’s quasiparallel bow shock. Geophys Res Lett 31: L16805. doi:10.1029/2004GL019524

    Article  ADS  Google Scholar 

  • Biskamp D (1973) Collisionless shock waves in plasmas. Nucl Fusion 13: 719–740

    Google Scholar 

  • Biskamp D (2003) Magnetohydrodynamic turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bisnovatyi-Kogan GS, Silich SA (1995) Shock-wave propagation in the nonuniform interstellar medium. Rev Mod Phys 67: 661–712

    Article  ADS  Google Scholar 

  • Blandford R, Eichler D (1987) Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys Rep 154: 1–75

    Article  ADS  Google Scholar 

  • Burgess D (1987) Shock drift acceleration at low energies. J Geophys Res 92: 1119–1130

    Article  ADS  Google Scholar 

  • Burgess D (1995) Collisinless shocks. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, Cambridge, pp 129–163

    Google Scholar 

  • Burlaga LF et al (2008) Magnetic fields at the solar wind termination shock. Nature 454: 75–77. doi:10.1038/nature07029

    Article  ADS  Google Scholar 

  • Coroniti FV (1970) Dissipation discontinuities in hydromagnetic shock waves. J Plasma Phys 4: 265

    Article  ADS  Google Scholar 

  • Décréau PME et al (2001) Early results from the Whisper instrument on cluster: an overview. Ann Geophysicae 19: 1241–1258

    ADS  Google Scholar 

  • De Hoffman F, Teller E (1950) Magneto-hydrodynamic shocks. Phys Rev 80: 692–703

    Article  ADS  Google Scholar 

  • Dickel JR, Wang S (2004) Non-thermal X-ray and radio emission from the SNR N 157B. Adv Space Res 33: 446–449. doi:10.1016/j.asr.2003.08.023

    Article  ADS  Google Scholar 

  • Diehl R (ed) et al (2002) The astrophysics of galactic cosmic rays. Space Science Series of ISSI, vol 13. Springer, New York

  • Dubouloz N, Scholer M (1995) Two-dimensional simulations of magnetic pulsations upstream of the Earth’s bow shock. J Geophys Res 100: 9461–9474

    Article  ADS  Google Scholar 

  • Edmiston JP, Kennel CF (1984) A parametric survey of the first critical Mach number for a fast MHD shock. J Plasma Phys 32: 429–441

    Article  ADS  Google Scholar 

  • Eselevich VG (1982) Shock-wave structure in collisionless plasmas from results of laboratory experiments. Space Sci Rev 32: 65–81

    Article  ADS  Google Scholar 

  • Feldman WC et al (1983) Electron velocity distributions near the earth’s bow shock. J Geophys Res 87: 96–110

    Article  ADS  Google Scholar 

  • Formisano V, Torbert R (1982) Ion acoustic wave forms generated by ion-ion streams at the earth’s bow shock. Geophys Res Lett 9: 207–210

    Article  ADS  Google Scholar 

  • Galeev AA, Krasnosel’skikh VV, Lobzin VV (1988) Fine structure of the front of a quasi-perpendicular supercritical collisionless shock wave. Sov J Plasma Phys 14: 697–702

    Google Scholar 

  • Gedalin MA (1997) Ion heating in oblique low-Mach number shocks. Geophys Res Lett 24: 2511–2514

    Article  ADS  Google Scholar 

  • Giacalone J (2004) Large-scale hybrid simulations of particle acceleration at a parallel shock. Astrophys J 609: 452–458

    Article  ADS  Google Scholar 

  • Giacalone J (2005) The efficient acceleration of thermal protons by perpendicular shocks. Astrophys J 628: L37–L40

    Article  ADS  Google Scholar 

  • Giacalone J, Neugebauer M (2008) The energy spectrum of energetic particles downstream of turbulent collisionless shocks. Astrophys J 673: 629–636

    Article  ADS  Google Scholar 

  • Ginzburg VL, Zheleznyakov VV (1958) On the possible mechanisms of sporadic solar radio emission ( radiation in an isotropic plasma). Sov Astron 2: 653

    ADS  Google Scholar 

  • Goldstein ML, Roberts DA, Matthaeus WM (1995) Magnetohydrodynamic turbulence in the solar wind. Ann Rev Astron Astrophys 33: 283–325

    Article  ADS  Google Scholar 

  • Goodrich CC, Scudder JD (1984) The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves. J Geophys Res 89: 6654–6662

    Article  ADS  Google Scholar 

  • Gurnett DA (1985) Plasma waves and instabilities. In: Tsurutani BT, Stone RG (eds) Collisionless shocks in the heliosphere: reviews of current research. Amer Geophys Union, Washington DC, pp 207–224

    Google Scholar 

  • Gurnett DA, Kurth WS (2008) Intense plasma waves at and near the solar wind termination shock. Nature 454: 78–80. doi:10.1038/nature07023

    Article  ADS  Google Scholar 

  • Gurnett DA, Neubauer FM, Schwenn R (1979) Plasma wave turbulence associated with an interplanetary shock. J Geophys Res 84: 541–552

    Article  ADS  Google Scholar 

  • Hada T, Oonishi M, Lembège B, Savoini P (2003) Shock front nonstationarity of supercritical perpendicular shocks. J Geophys Res 108: 1233

    Article  Google Scholar 

  • Hillier DJ et al (1993) The 0.1–2.5-KEV X-ray spectrum of the O4F-STAR Zeta-Puppis. Astron Astrophys 276: 117

    ADS  Google Scholar 

  • Hillier DJ et al (1998) An optical and near-IR spectroscopic study of the extreme P Cygni-type supergiant HDE 316285. Astron Astrophys 340: 438

    ADS  Google Scholar 

  • Hobara Y et al (2008) Cluster observations of electrostatic solitary waves near the Earth’s bow shock. J Geophys Res 113: A05211. doi:10.1029/2007JA012789

    Article  Google Scholar 

  • Hoshino M (2001) Nonthermal particle acceleration in shock front region: “Shock Surfing Accelerations”. Progr Theor Phys Suppl 143: 149–181

    Article  ADS  Google Scholar 

  • Hoshino M, Shimada N (2002) Nonthermal electrons at high Mach number shocks: electron shock surfing acceleration. Astrophys J 572: 880–887

    Article  ADS  Google Scholar 

  • Hull AJ et al (2006) Large-amplitude electrostatic waves associated with magnetic ramp substructure at Earth’s bow shock. Geophys Res Lett 33: L15104. doi:10.1029/2005GL025564

    Article  ADS  Google Scholar 

  • Jaroschek CH, Lesch H, Treumann RA (2004) Self-consistent diffusive lifetimes of Weibel magnetic fields in gamma-ray bursts. Astrophys J 616: 1065–1071

    Article  ADS  Google Scholar 

  • Jaroschek CH, Lesch H, Treumann RA (2005) Ultrarelativistic plasma shell collisions in γ-ray burst sources: dimensional effects on the final steady state magnetic field. Astrophys J 618: 822–831

    Article  ADS  Google Scholar 

  • Jeffrey A, Taniuti T (1964) Nonlinear wave propagation. Academic Press, New York

    Google Scholar 

  • Kantrowitz A, Petschek HE (1966) MHD characteristics and shock waves. In: Kunkel WB (eds) Plasma physics in theory and application. McGraw-Hill, New York, pp 148–207

    Google Scholar 

  • Karpman VI (1964) Structure of shock front propagating at an angle to a magnetic field in a low-density plasma. Sov Phys-Tech Phys 8: 715–719

    MathSciNet  Google Scholar 

  • Karpman VI, Sagdeev RZ (1964) The stability of a shock front moving across a magnetic field in a rarefied plasma. Sov Phys Tech Phys 8: 606–611

    MathSciNet  Google Scholar 

  • Kennel CF, Sagdeev RZ (1967) Collisionless shock waves in high beta plasma 1 & 2. J Geophys Res 72:3303–3326; 3327–3341

    Google Scholar 

  • Kennel CF, Edmiston JP, Hada T (1985) A quarter century of collisionless shock research. In: Stone RG, Tsurutani BT (eds) Collisionless shocks in the heliosphere: a tutorial review. Amer Geophys Union, Washington DC, pp 1–36

    Google Scholar 

  • Kis A et al (2004) Multi-spacecraft observations of diffuse ions upstream of Earth’s bow shock. Geophys Res Lett 31: L20801. doi:10.1029/2004GL020759

    Article  ADS  Google Scholar 

  • Kis A et al (2007) Scattering of field-aligned beam ions upstream of Earth’s bow shock. Ann Geophysicae 25: 785–799

    ADS  Google Scholar 

  • Krimigis SM, Zwickl RD, Baker DN (1985) Energetic ions upstream of Jupiter’s bow shock. J Geophys Res 90(A5): 3947–3960

    Article  ADS  Google Scholar 

  • Kucharek H, Scholer M (1991) Origin of diffuse superthermal ions at quasi-parallel supercritical collisionless shocks. J Geophys Res 96: 21195–21205

    Article  ADS  Google Scholar 

  • Kudritzki RP, Puls J (2000) Winds from hot stars. Ann Rev Astron Astrophys 38: 613–666

    Article  ADS  Google Scholar 

  • Landau LD, Lifshitz EM (1959) Fluid mechanics. Addison-Wesley, Reading

    Google Scholar 

  • Lax PD (1957) Hyperbolic systems of conservation laws II. Commun Pure Appl Math 10: 537

    Article  MATH  MathSciNet  Google Scholar 

  • Lee MA (1982) Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth’s bow shock. J Geophys Res 87: 5063–5080

    Article  ADS  Google Scholar 

  • Lembège B, Savoini P (2002) Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front. J Geophys Res 107(A3): 1037

    Article  Google Scholar 

  • Lembège B et al (1999) The spatial sizes of electric and magnetic field gradients in a simulated shock. Adv Space Res 24: 109–112

    Article  ADS  Google Scholar 

  • Liberman MA, Velikhovich L (1986) Physics of shock waves in gases and plasmas. Springer Verlag, Berlin

    Google Scholar 

  • Lucek EA et al (2002) Cluster magnetic field observations at a quasi-parallel bow shock. Ann Geophysicae 20: 1699–1710

    Article  ADS  Google Scholar 

  • Marshall W (1955) The structure of magneto-hydrodynamic shock waves. Proc R Soc Lond A 233: 367

    Article  MATH  ADS  Google Scholar 

  • Mathews WG, Brighenti F (2003) Hot gas in and around elliptical galaxies. Ann Rev Astron Astrophys 41: 191–239. doi:10.1146/annurev.astro.41.090401.0945542

    Article  ADS  Google Scholar 

  • Matsukiyo S, Scholer M (2003) Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks. J Geophys Res 108: 1459

    Article  Google Scholar 

  • Matsukiyo S, Scholer M (2006a) On microinstabilities in the foot of high Mach number perpendicular shocks. J Geophys Res 111: A06104

    Article  Google Scholar 

  • Matsukiyo S, Scholer M (2006b) On reformation of quasi-perpendicular collisionless shocks. Adv Space Res 38: 57–63

    Article  ADS  Google Scholar 

  • Narita Y, Glassmeier K-H, Treumann RA (2006) Wave-number spectra and intermittency in the terrestrial foreshock region. Phys Rev Lett 97: 191101

    Article  ADS  Google Scholar 

  • Narita Y, Glassmeier K-H, Gary SP, Goldstein ML, Treumann RA (2009) Analysis of wave number spectra through the terrestrial bow shock. J Geophys Res 114 (in press)

  • Ness NF et al (1979) Magnetic field studies at Jupiter by Voyager 1—preliminary results. Science 204:982–986

    Article  ADS  Google Scholar 

  • Ohsawa Y (1985a) Strong ion acceleration by a collisionless magnetosonic shock wave propagating perpendicularly to a magnetic field. Phys Fluids 28: 2130–2136

    Article  ADS  Google Scholar 

  • Ohsawa Y (1985b) Nonlinear magnetosonic fast and slow waves in finite beta plasmas and associated resonant ion acceleration. J Phys Soc Jpn 54: 4073–4076

    Article  ADS  Google Scholar 

  • Oka M et al (2006) Whistler critical Mach number and electron acceleration at the bow shock: geotail observation. Geophys Res Lett 33: L24104

    Article  ADS  Google Scholar 

  • Owocki SP, Puls J (1999) Line-driven Stellar winds: the dynamical role of diffuse radiation gradients and limitations to the Sobolev approach. Astrophys J 510: 355

    Article  ADS  Google Scholar 

  • Papadopoulos K (1988) Electron heating in superhigh Mach number shocks. Astrophys Space Sci 144: 535–547

    ADS  Google Scholar 

  • Paschmann G et al (1981) Characteristics of reflected and diffuse ions upstream from the earth’s bow shock. J Geophys Res 86: 4355–4364

    Article  ADS  Google Scholar 

  • Pickett JS et al (2004) On the generation of solitary waves observed by Cluster in the near-Earth magnetosheath. Nonlinear Process Geophys 12: 181–193

    ADS  Google Scholar 

  • Sagdeev RZ (1966) Cooperative phenomena and shock waves in collisionless plasmas. Rev Plasma Phys 4:23–91. Leontovich MA (ed) Consultants Bureau, New York

    Google Scholar 

  • Sagdeev RZ, Shapiro VD (1973) Influence of transverse magnetic field on Landau damping. JETP Lett (Engl Transl) 17: 279–283

    ADS  Google Scholar 

  • Schmitz H, Chapman SC, Dendy RO (2002) Electron preacceleration mechanisms in the foot region of high Alfvénic Mach number shocks. Astrophys J 570: 637–646

    Article  ADS  Google Scholar 

  • Scholer M (1993) Upstream waves, shocklets, short large-amplitude magnetic structures and the cyclic behavior of oblique quasi-parallel collisionless shocks. J Geophys Res 98: 47–57

    Article  ADS  Google Scholar 

  • Scholer M, Burgess D (2006) Transition scale at quasiperpendicular collisionless shocks: full particle electromagnetic simulations. Phys Plasmas 13: 062101

    Article  ADS  Google Scholar 

  • Scholer M, Burgess D (2007) Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks. Phys Plasmas 14: 072103

    Article  ADS  Google Scholar 

  • Scholer M, Kucharek H (1999a) Interaction of pickup ions with quasi-parallel shocks. Geophys Res Lett 26: 29–32

    Article  ADS  Google Scholar 

  • Scholer M, Kucharek H (1999b) Dissipation, ion injection, and acceleration in collisionless quasi-parallel shocks. Astrophys Space Sci 264: 527–543

    Article  MATH  ADS  Google Scholar 

  • Scholer M, Matsukiyo S (2004) Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio. Ann Geophysicae 22: 2345–2353

    Article  ADS  Google Scholar 

  • Scholer M, Kucharek H, Giacalone J (2000) Cross-field diffusion of charged particles and the problem of ion injection and acceleration at quasi-perpendicular shocks. J Geophys Res 105: 18285–18293

    Article  ADS  Google Scholar 

  • Scholer M, Shinohara I, Matsukiyo S (2003) Quasi-perpendicular shocks: length scale of the cross-shock potential, shock reformation, and implication for shock surfing. J Geophys Res 108: 1014. doi:10.1029/2002JA009515

    Article  Google Scholar 

  • Schwartz SJ, Thomsen MF, Gosling JT (1983) Ions upstream of the earth’s bow shock—a theoretical comparison of alternative source populations. J Geophys Res 88: 2039–2047

    Article  ADS  Google Scholar 

  • Sckopke N et al (1983) Evolution of ion distributions across the nearly perpendicular bow shock—specularly and non-specularly reflected-gyrating ions. J Geophys Res 88: 6121–6136

    Article  ADS  Google Scholar 

  • Scudder JD (1995) A review of the physics of electron heating at collisionless shocks. Adv Space Res 15: 181–223

    Article  ADS  Google Scholar 

  • Scudder JD et al (1986) The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. J Geophys Res 91: 11019–11097

    Article  ADS  Google Scholar 

  • Shimada N, Hoshino M (2000) Strong electron acceleration at high mach number shock waves: simulation study of electron dynamics. Astrophys J 543: L67–L71

    Article  ADS  Google Scholar 

  • Shimada N, Hoshino M (2005) Effect of strong thermalization on shock dynamical behavior. J Geophys Res 110: A02105. doi:10.1029/2004JA010596

    Article  Google Scholar 

  • Shlesinger MF, Zaslavsky GM, Klafter J (1993) Strange kinetics. Nature 363: 31–37

    Article  ADS  Google Scholar 

  • Sonnerup BUÖ (1969) Acceleration of particles reflected at a shock front. J Geophys Res 74: 1301–1304

    Article  ADS  Google Scholar 

  • Stone EC et al (2008) An asymmetric solar wind termination shock. Nature 454: 71–74. doi:10.1038/nature07022

    Article  ADS  Google Scholar 

  • Sugiyama T, Terasawa T (1999) A scatter-free ion acceleration process in the parallel shock. Adv Space Res 24: 73–77

    Article  ADS  Google Scholar 

  • Sugiyama T, Fujimoto M, Mukai T (2001) Quick ion injection and acceleration at quasi-parallel shocks. J Geophys Res 106: 21657–21673

    Article  ADS  Google Scholar 

  • Terasawa T, Scholer M, Ipavich FM (1985) Anisotropy observation of diffuse ions (greater than 30 keV/e) upstream of the earth’s bow shock. J Geophys Res 90: 249–260

    Article  ADS  Google Scholar 

  • Tidman DA, Krall NA (1971) Shock waves in collisionless plasmas. Wiley-Interscience, New York

    Google Scholar 

  • Treumann RA (2006) The electron cyclotron maser for astrophysical application. Astron Astrophys Rev 13: 229–315

    Article  ADS  Google Scholar 

  • Treumann RA (2008) A note on the theory of transverse diffusion in shock particle acceleration. Theory of super-diffusion for the magnetopause. Geophys Res Lett 24:1727–1730; arXiv: 0811.3938v1 [astro-ph]

    Google Scholar 

  • Treumann RA, Baumjohann W (1997) Advanced space plasma physics. Imperial College Press, London

    MATH  Google Scholar 

  • Treumann RA, LaBelle J (1992) Band splitting in solar type II radio bursts. Astrophys J 399: L167–L170

    Article  ADS  Google Scholar 

  • Trotignon JG et al (2001) How to determine the thermal electron density and the magnetic field strength from the Cluster/Whisper observations around the Earth. Ann Geophysicae 19: 1711–1720

    Article  ADS  Google Scholar 

  • Tsytovich VN (1970) Nonlinear effects in plasmas. Plenum Press, New York

    Google Scholar 

  • Tu C-Y, Marsch E (1995) MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci Rev 73: 1–210

    Article  ADS  Google Scholar 

  • Veilleux S, Cecil G, Bland-Hawthorn J (2005) Galactic winds. Ann Rev Astron Astrophys 43: 769–826. doi:10.11146/annurev.astro.43.072193.150610

    Article  ADS  Google Scholar 

  • Weibel ES (1959) Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys Rev Lett 2: 83–84

    Article  ADS  Google Scholar 

  • Wu CS (1984) A fast Fermi process—energetic electrons accelerated by a nearly perpendicular bow shock. J Geophys Res 89: 8857–8862

    Article  ADS  Google Scholar 

  • Wu CC, Kennel CF (1992) Structural relations for time-dependent intermediate shocks. Geophys Res Lett 19: 2087–2090

    Article  ADS  Google Scholar 

  • Zahibo N et al (2007) Strongly nonlinear steepening of long interfacial waves. Nonlinear Process Geophys 14: 247–256

    ADS  Google Scholar 

  • Zeldovich YB, Raizer YP (1966/1967) Physics of shock waves and high-temperature hydrodynamic phenomena, vols 1 & 2. Academic Press, New York

  • Ziegler HJ, Schindler K (1988) Structure of subcritical perpendicular shock waves. Phys Fluids 31: 570–576

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Treumann.

Additional information

R. A. Treumann: Visiting the International Space Science Institute, Bern, Switzerland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treumann, R.A. Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks. Astron Astrophys Rev 17, 409–535 (2009). https://doi.org/10.1007/s00159-009-0024-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00159-009-0024-2

Keywords

Navigation