Skip to main content
Log in

Stacked 1D Convolutional LSTM (sConvLSTM1D) Model for Effective Prediction of Sunspot Time Series

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A multi-layer, deep-learning (DL) architecture consisting of stacked Convolutional Long Short Term Memory (sConvLSTM1D) layers is proposed to forecast the sunspot number (SSN) more effectively. The proposed model with optimized hyper-parameters performs efficiently on four kinds of sunspot data with different frequencies of time that are yearly, monthly, daily, and 13-month smoothed provided by the World Data Center-Sunspot Index and Long Term Solar Observation (WDC-SILSO), the Royal Observatory of Belgium (SILSO World Data Center). The model was contrasted with other traditional DL models on different performance metrics, namely root-mean-square error (RMSE), mean-absolute error (MAE), mean-absolute-percentage error (MAPE), and mean-absolute-scaled error (MASE). A non-parametric statistical test has also been carried out to confirm the model’s effectiveness. The prediction of the highest yearly mean of total sunspot number (SSN) in Solar Cycle 25 (SC25) has also been performed. The proposed sConvLSTM1D model suggests that the solar cycle exhibits the characteristics of a weak cycle. However, it is anticipated to be stronger than the preceding Solar Cycle 24 (SC24). The year of peak sunspot number will be 2024, as per the prediction, with the peak value of yearly mean sunspot number as 140.84, which is 24.3% higher than the peak value of the yearly mean of total sunspot number, which was 113.3 in the Solar Cycle 24 in the year 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Algorithm 1
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  • Arfianti, U.I., Novitasari, D.C.R., Widodo, N., Hafiyusholeh, M., Utami, W.D.: 2021, Sunspot number prediction using Gated Recurrent Unit (GRU) algorithm. Indones. J. Comp. Cybern. Sys. 15, 141. DOI.

    Article  Google Scholar 

  • Bai, Y., Zeng, B., Li, C., Zhang, J.: 2019, An ensemble long short-term memory neural network for hourly PM2. 5 concentration forecasting. Chemosphere 222, 286. DOI.

    Article  ADS  Google Scholar 

  • Benson, B., Pan, W., Prasad, A., Gary, G., Hu, Q.: 2020, Forecasting solar cycle 25 using deep neural networks. Solar Phys. 295, 65. DOI.

    Article  ADS  Google Scholar 

  • Büyükşahin, Ü.Ç., Ertekin, Ş.: 2019, Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition. Neurocomputing 361, 151. DOI.

    Article  Google Scholar 

  • Cantillo-Luna, S., Moreno-Chuquen, R., Celeita, D., Anders, G.: 2023, Deep and machine learning models to forecast photovoltaic power generation. Energies 16, 4097. DOI.

    Article  Google Scholar 

  • Chattopadhyay, S., Jhajharia, D., Chattopadhyay, G.: 2011, Trend estimation and univariate forecast of the sunspot numbers: development and comparison of ARMA, ARIMA and autoregressive neural network models. C. R. Géosci. 343, 433. DOI.

    Article  Google Scholar 

  • Covas, E., Peixinho, N., Fernandes, J.: 2019, Neural network forecast of the sunspot butterfly diagram. Solar Phys. 294, 24. DOI.

    Article  ADS  Google Scholar 

  • Dang, Y., Chen, Z., Li, H., Shu, H.: 2022, A comparative study of non-deep learning, deep learning, and ensemble learning methods for sunspot number prediction. Appl. Artif. Intell. 36, 2074129. DOI.

    Article  Google Scholar 

  • Demšar, J.: 2006, Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1.

    MathSciNet  MATH  Google Scholar 

  • Du, Z.: 2020, The solar cycle: predicting the peak of solar cycle 25. Astrophys. Space Sci. 365, 104. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.: 2022, Predicting the maximum amplitude of solar cycle 25 using the early value of the rising phase. Solar Phys. 297, 61. DOI.

    Article  ADS  Google Scholar 

  • Elgamal, M.: 2020, Sunspot time series forecasting using deep learning. Int. J. Comp. Inform. Tech. 2279(0764), 9. DOI.

    Article  Google Scholar 

  • Gonçalves, Í.G., Echer, E., Frigo, E.: 2020, Sunspot cycle prediction using warped Gaussian process regression. Adv. Space Res. 65, 677. DOI.

    Article  ADS  Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A.: 2016, Deep Learning, MIT, Cambridge USA.

    MATH  Google Scholar 

  • Han, Y., Yin, Z.: 2019, A decline phase modeling for the prediction of solar cycle 25. Solar Phys. 294, 107. DOI.

    Article  ADS  Google Scholar 

  • Hasoon, S.O., Al-Hashimi, M.M.: 2022, Hybrid deep neural network and long short term memory network for predicting of sunspot time series. Int. J. Math. Comput. Sci. 17, 955.

    MATH  Google Scholar 

  • Hochreiter, S., Schmidhuber, J.: 1997, Long short-term memory. Neural Comp. 9(8), 1735. DOI.

    Article  Google Scholar 

  • Kakad, B., Kakad, A., Ramesh, D.S.: 2017, Shannon entropy-based prediction of solar cycle 25. Solar Phys. 292, 1. DOI.

    Article  ADS  Google Scholar 

  • Kumar, B., Sunil, Yadav, Y.: 2023, A novel hybrid model combining \(\beta \)SARMA and LSTM for time series forecasting. Appl. Soft Comput. 134, 110019. DOI.

    Article  Google Scholar 

  • Labonville, F., Charbonneau, P., Lemerle, A.: 2019, A dynamo-based forecast of solar cycle 25. Solar Phys. 294, 82. DOI.

    Article  ADS  Google Scholar 

  • Lee, T.: 2020, EMD and LSTM hybrid deep learning model for predicting sunspot number time series with a cyclic pattern. Solar Phys. 295, 82. DOI.

    Article  ADS  Google Scholar 

  • Li, F., Kong, D., Xie, J., Xiang, N., Xu, J.: 2018, Solar cycle characteristics and their application in the prediction of cycle 25. J. Atmos. Solar-Terr. Phys. 181, 110. DOI.

    Article  ADS  Google Scholar 

  • Marques, C., Leal-Júnior, A., Kumar, S.: 2023, Multifunctional integration of optical fibers and nanomaterials for aircraft systems. Materials 16, 1433. DOI.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Chapman, S., Leamon, R.J., Egeland, R., Watkins, N.W.: 2020, Overlapping magnetic activity cycles and the sunspot number: forecasting sunspot cycle 25 amplitude. Solar Phys. 295, 1. DOI.

    Article  Google Scholar 

  • Nghiem, T.-L., Le, V.-D., Le, T.-L., Maréchal, P., Delahaye, D., Vidosavljevic, A.: 2022, Applying Bayesian inference in a hybrid CNN-LSTM model for time-series prediction. In: 2022 Internat. Conf. Multimedia Analy. Pattern Recog. (MAPR), 1, IEEE, Los Alamitos. DOI.

    Chapter  Google Scholar 

  • Okoh, D., Seemala, G., Rabiu, A., Uwamahoro, J., Habarulema, J., Aggarwal, M.: 2018, A hybrid regression-neural network (HR-NN) method for forecasting the solar activity. Space Weather 16, 1424. DOI.

    Article  ADS  Google Scholar 

  • Pala, Z., Atici, R.: 2019, Forecasting sunspot time series using deep learning methods. Solar Phys. 294, 50. DOI.

    Article  ADS  Google Scholar 

  • Panigrahi, S., Pattanayak, R.M., Sethy, P.K., Behera, S.K.: 2021, Forecasting of sunspot time series using a hybridization of ARIMA, ETS and SVM methods. Solar Phys. 296, 1. DOI.

    Article  ADS  Google Scholar 

  • Peguero, J., Carrasco, V.: 2023, A critical comment on “can solar cycle 25 be a new Dalton Minimum?”. Solar Phys. 298, 48. DOI.

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: 2008, Predictions of solar cycle 24. Solar Phys. 252, 209. DOI.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Schatten, K.H.: 2018, An early prediction of the amplitude of solar cycle 25. Solar Phys. 293, 112. DOI.

    Article  ADS  Google Scholar 

  • Prasad, A., Roy, S., Sarkar, A., Panja, S.C., Patra, S.N.: 2022, Prediction of solar cycle 25 using deep learning based long short-term memory forecasting technique. Adv. Space Res. 69, 798. DOI.

    Article  ADS  Google Scholar 

  • Ramachandran, P., Zoph, B., Le, Q.V.: 2017, Searching for activation functions. DOI. arXiv.

  • Ramadevi, B., Bingi, K.: 2022, Time series forecasting model for sunspot number. In: 2022 Internat. Conf. on Intelligent Control. Comp. Smart Power (ICICCSP), 1, IEEE, Los Alamitos. DOI.

    Chapter  Google Scholar 

  • Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., Woo, W.-C.: 2015, Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Adv. Neural Inform. Proc. Sys. 28, Curran Associates, Red Hook. URL.

    Google Scholar 

  • Shi, C., Zhang, Z., Zhang, W., Zhang, C., Xu, Q.: 2022, Learning multiscale temporal–spatial–spectral features via a multipath convolutional LSTM neural network for change detection with hyperspectral images. IEEE Trans. Geosci. Remote Sens. 60, 1. DOI.

    Article  Google Scholar 

  • SILSO World Data Center: The International Sunspot Number. International Sunspot Number Monthly Bulletin and online catalogue. URL.

  • Singh, A., Bhargawa, A.: 2017, An early prediction of 25th solar cycle using Hurst exponent. Astrophys. Space Sci. 362, 199. DOI.

    Article  ADS  Google Scholar 

  • Szandała, T.: 2021, Review and comparison of commonly used activation functions for deep neural networks. Bio-Inspir. Comput. 903, 203. DOI.

    Article  Google Scholar 

  • Upton, L.A., Hathaway, D.H.: 2018, An updated solar cycle 25 prediction with AFT: the modern minimum. Geophys. Res. Lett. 45, 8091. DOI.

    Article  ADS  Google Scholar 

  • Vokhmyanin, M., Arlt, R., Zolotova, N.: 2020, Sunspot positions and areas from observations by Thomas Harriot. Solar Phys. 295, 39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Q.-J., Li, J.-C., Guo, L.-Q.: 2021, Solar cycle prediction using a long short-term memory deep learning model. Res. Astron. Astrophys. 21, 012. DOI.

    Article  ADS  Google Scholar 

  • Wibawa, A.P., Utama, A.B.P., Elmunsyah, H., Pujianto, U., Dwiyanto, F.A., Hernandez, L.: 2022, Time-series analysis with smoothed convolutional neural network. J. Big Data 9, 44. DOI.

    Article  Google Scholar 

  • Zhang, L., Lu, L., Wang, X., Zhu, R.M., Bagheri, M., Summers, R.M., Yao, J.: 2019, Spatio-temporal convolutional LSTMs for tumor growth prediction by learning 4D longitudinal patient data. IEEE Trans. Med. Imaging 39, 1114. DOI.

    Article  Google Scholar 

  • Zhu, H., Zhu, W., He, M.: 2022, Solar cycle 25 prediction using an optimized long short-term memory mode with F10. 7. Solar Phys. 297, 157. DOI.

    Article  ADS  Google Scholar 

  • Zhu, H., Chen, H., Zhu, W., He, M.: 2023, Predicting solar cycle 25 using an optimized long short-term memory model based on sunspot area data. Adv. Space Res. 71, 3521. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the WDC-SILSO, Royal Observatory of Belgium, Brussels, for the sunspot-number data.

Author information

Authors and Affiliations

Authors

Contributions

Abhijeet Kumar developed the methodology, performed the experimental analysis for the article and prepared the original draft. Vipin Kumar did the conceptualisation of the article, and methodology, supervised, reviewed and validated the work, formal analysis.

Corresponding author

Correspondence to Vipin Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Loss Plots of Different Models for Different Datasets

Appendix: Loss Plots of Different Models for Different Datasets

Figure 18
figure 19

Forecast of SC25 based on the proposed stacked ConvLSTM1D model over yearly mean of sunspot number.

Figure 19
figure 20

Training loss of all models on the yearly mean of SSN.

Figure 20
figure 21

Validation loss of all models on the yearly mean of SSN.

Figure 21
figure 22

Training loss of all models on the monthly mean of total SSN.

Figure 22
figure 23

Validation loss of all models on the monthly mean of total SSN.

Figure 23
figure 24

Training loss of all models on the 13-month smooth of total SSN.

Figure 24
figure 25

Validation loss of all models on the 13-month smooth of total SSN.

Figure 25
figure 26

Training loss of all models on the daily SSN.

Figure 26
figure 27

Validation loss of all models on the daily SSN.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, V. Stacked 1D Convolutional LSTM (sConvLSTM1D) Model for Effective Prediction of Sunspot Time Series. Sol Phys 298, 121 (2023). https://doi.org/10.1007/s11207-023-02209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02209-3

Keywords

Navigation