Skip to main content
Log in

Forecasting of Sunspot Time Series Using a Hybridization of ARIMA, ETS and SVM Methods

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar activity directly influences the heliospheric environment and lives on the Earth. Sunspot number (SN) is one of the most crucial and commonly predicted solar activity indices. The prediction of SN time series is a challenging problem owing to its non-stationary, non-Gaussian and nonlinear nature. Therefore, improving the forecasting accuracy of SN time series is an important and challenging task. Motivated from this, in this paper, we have proposed a hybridization of the autoregressive integrated moving average (ARIMA); exponential smoothing with error, trend and seasonality (ETS); and support vector machine (SVM) to predict monthly and yearly SN time series. In this method, first ARIMA, ETS and SVM with linear kernel function are applied to the SN time series and the maximum of forecasts are determined to obtain the forecasts on linear component. Then the residual series is obtained by subtracting the forecasts on linear component from SN time series. The residual series is considered as nonlinear and modeled using SVM with Gaussian kernel function. Then the forecasts on linear component are added with the forecasts on nonlinear component to obtain the final forecasts. To evaluate the efficiency of the proposed method, three constituent models, one of the most popular deep learning models long short-term memory (LSTM), four hybrid methods, four ensemble methods are considered. Furthermore, two horizons, monthly and yearly sunspot time series are considered to evaluate the robustness of the proposed method. Results indicate the statistical superiority of the proposed methods over different horizons considering different accuracy measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Arlt, R., Weiss, N.: 2014, Solar activity in the past and the chaotic behaviour of the dynamo. Space Sci. Rev. 186(1–4), 525. DOI.

    Article  ADS  Google Scholar 

  • Attia, A., Ismail, H.A., Basurah, H.M.: 2013, A neuro-fuzzy modeling for prediction of Solar Cycles 24 and 25. Astrophys. Space Sci. 344, 5. DOI.

    Article  ADS  Google Scholar 

  • Babu, C.N., Reddy, B.E.: 2014, A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Appl. Soft Comput. 23,pp, 27. DOI.

    Article  Google Scholar 

  • Bisoi, S.K., Janardhan, P., Ananthakrishnan, S.: 2020, Another mini solar maximum in the offing: a prediction for the amplitude of solar Cycle 25. J. Geophys. Res. 125(7), e2019JA027508. DOI.

    Article  ADS  Google Scholar 

  • Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: 2015, Time Series Analysis: Forecasting and Control, Wiley, New York.

    MATH  Google Scholar 

  • Demsar, J.: 2006, Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1.

    MathSciNet  MATH  Google Scholar 

  • Gardner, E.S.: 1985, Exponential smoothing: the state of the art. J. Forecast. 4, 1. DOI.

    Article  Google Scholar 

  • Hollander, M., Wolfe, D.A., Chicken, E.: 1999, Nonparametric Statistical Methods, Wiley, Hoboken.

    MATH  Google Scholar 

  • Holt, C.E.: 2004, Forecasting seasonals and trends by exponentially weighted averages. Int. J. Forecast. 20(1), 5. DOI.

    Article  Google Scholar 

  • Hyndman, R.J., Khandakar, Y.: 2008, Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 26(3), 1. DOI.

    Article  Google Scholar 

  • Hyndman, R.J., Koehler, R., Ord, A.B., Snyder, R.D.: 2008, Forecasting with Exponential Smoothing: The State Space Approach, Springer, Berlin.

    Book  Google Scholar 

  • Hyndman, R.J., Koehler, A.B.: 2006, Another look at measures of forecast accuracy. Int. J. Forecast. 22(4), 679. DOI.

    Article  Google Scholar 

  • Jiang, C., Song, F.: 2011, Sunspot forecasting by using chaotic time series analysis and NARX network. J. Comput. 6(7), 1424. DOI.

    Article  Google Scholar 

  • Kane, R.P.: 2013, An estimate for the size of sunspot Cycle 24. Solar Phys. 282(1), 87. DOI.

    Article  ADS  Google Scholar 

  • Kane, R.P.: 2007, A preliminary estimate of the size of the coming solar Cycle 24, based on Ohl’s precursor method. Solar Phys. 243, 205. DOI.

    Article  ADS  Google Scholar 

  • Li, K., Feng, W., Li, F.: 2015, Predicting the maximum amplitude of Solar Cycle 25 and its timing. J. Atmos. Solar-Terr. Phys. 135, 72. DOI.

    Article  ADS  Google Scholar 

  • Labonville, F., Charbonneau, P., Lemerle, A.: 2019, A dynamo-based forecast of solar Cycle 25. Solar Phys. 294, 82. DOI.

    Article  ADS  Google Scholar 

  • Noyes, R.W.: 1982, The Sun, Our Star, Harvard University Press, Cambridge.

    Google Scholar 

  • Okoh, D., Seemala, G., Rabiu, A., Uwamahoro, J., Habarulema, J., Aggarwal, M.: 2018, A hybrid regression-neural network (HR-NN) method for forecasting the solar activity. Space Weather 16, 1424. DOI.

    Article  ADS  Google Scholar 

  • Oliveira, J.F., Ludermir, T.B.: 2016, A hybrid evolutionary decomposition system for time series forecasting. Neurocomputing 180, 27. DOI.

    Article  Google Scholar 

  • Pala, Z., Atici, R.: 2019, Forecasting sunspot time series using deep learning methods. Solar Phys. 294, 1. DOI.

    Article  Google Scholar 

  • Panigrahi, S., Behera, H.S., Abraham, A.: 2018, A fuzzy filter based hybrid ARIMA-ANN model for time series forecasting. In: Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016), Advances in Intelligent Systems and Computing 614, Springer, Cham, 592. DOI.

    Chapter  Google Scholar 

  • Panigrahi, S., Behera, H.S.: 2017, A hybrid ETS-ANN model for time series forecasting. Eng. Appl. Artif. Intell. 66, 49. DOI.

    Article  Google Scholar 

  • Pegels, C.C.: 1969, Exponential forecasting: some new variations. Manag. Sci. 15(5), 311. https://www.jstor.org/stable/2628137.

    Article  Google Scholar 

  • Pesnell, W.D., Schatten, K.H.: 2018, An early prediction of the amplitude of Solar Cycle 25. Solar Phys. 293, 112. DOI.

    Article  ADS  Google Scholar 

  • Pishkalo, M.I.: 2014, Prediction of Solar Cycle 24 using sunspot number near the cycle minimum. Solar Phys. 289, 1815. DOI.

    Article  ADS  Google Scholar 

  • Quassim, M.S., Attia, A., Elminir, H.K.: 2007, Forecasting the peak amplitude of the 24th and 25th sunspot cycles and accompanying geomagnetic activity. Solar Phys. 243, 253. DOI.

    Article  ADS  Google Scholar 

  • Rigozo, N., Echer, M.S., Evangelista, H., Nordemann, D., Echer, E.: 2011, Prediction of sunspot number amplitude and solar cycle length for Cycles 24 and 25. J. Atmos. Solar-Terr. Phys. 73, 1294. DOI.

    Article  ADS  Google Scholar 

  • Sabarinath, A., Anilkumar, A.K.: 2018, Sunspot cycle prediction using multivariate regression and binary mixture of Laplace distribution model. J. Earth Syst. Sci. 127, 84. DOI.

    Article  ADS  Google Scholar 

  • Tang, J., Zhang, X.: 2012, Prediction of smoothed monthly mean sunspot number based on chaos theory. Acta Phys. Sin. 61(16), 169601. DOI.

    Article  Google Scholar 

  • Taylor, J.W.: 2003, Exponential smoothing with a damped multiplicative trend. Int. J. Forecast. 19, 715. DOI.

    Article  Google Scholar 

  • Vapnik, V.N.: 1995, The Nature of Statistical Learning Theory, Springer, Berlin.

    Book  Google Scholar 

  • Vapnik, V.N.: 1998, Statistical Learning Theory, Wiley, New York.

    MATH  Google Scholar 

  • Wang, L., Zou, H., Su, J., Li, L., Chaudhry, S.: 2013, An ARIMA-ANN hybrid model for time series forecasting. Syst. Res. Behav. Sci. 30(3), 244. DOI.

    Article  Google Scholar 

  • Winters, P.R.: 1960, Forecasting sales by exponentially weighted moving averages. Manag. Sci. 6, 324. http://www.jstor.org/stable/2627346.

    Article  MathSciNet  Google Scholar 

  • Zhang, G.: 2003, Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159. DOI.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable suggestions which significantly improved the quality of the paper. The authors would also like to thank Dr. Prabhat Kumar Sahu, Reader, Sambalpur University, Odisha, India for providing the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibarama Panigrahi.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panigrahi, S., Pattanayak, R.M., Sethy, P.K. et al. Forecasting of Sunspot Time Series Using a Hybridization of ARIMA, ETS and SVM Methods. Sol Phys 296, 6 (2021). https://doi.org/10.1007/s11207-020-01757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01757-2

Keywords

Navigation