Skip to main content
Log in

An Early Prediction of the Amplitude of Solar Cycle 25

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A “Solar Dynamo” (SODA) Index prediction of the amplitude of Solar Cycle 25 is described. The SODA Index combines values of the solar polar magnetic field and the solar spectral irradiance at 10.7 cm to create a precursor of future solar activity. The result is an envelope of solar activity that minimizes the 11-year period of the sunspot cycle. We show that the variation in time of the SODA Index is similar to several wavelet transforms of the solar spectral irradiance at 10.7 cm. Polar field predictions for Solar Cycles 21 – 24 are used to show the success of the polar field precursor in previous sunspot cycles. Using the present value of the SODA index, we estimate that the next cycle’s smoothed peak activity will be about \(140 \pm30\) solar flux units for the 10.7 cm radio flux and a Version 2 sunspot number of \(135 \pm25\). This suggests that Solar Cycle 25 will be comparable to Solar Cycle 24. The estimated peak is expected to occur near \(2025.2 \pm1.5\) year. Because the current approach uses data prior to solar minimum, these estimates may improve as the upcoming solar minimum draws closer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI . ADS .

    Article  ADS  Google Scholar 

  • Brown, G.: 1986, Working group “A” report: long-term solar activity predictions. In: Simon, P.A., Heckman, G., Shea, M.A. (eds.) Solar-Terrestrial Predictions, 1. ADS .

    Google Scholar 

  • Brown, G.M., Williams, W.R.: 1969, Some properties of the day-to-day variability of Sq(H). Planet. Space Sci. 17, 455. DOI . ADS .

    Article  ADS  Google Scholar 

  • Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys. 7(3). DOI .

  • Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. Space Sci. Rev. 186(1–4), 35. DOI .

    Article  ADS  Google Scholar 

  • Feynman, J.: 1982, Geomagnetic and solar wind cycles, 1900–1975. J. Geophys. Res. 87, 6153.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7(1). DOI .

  • Hathaway, D.H., Wilson, R.M., Reichman, E.J.: 1994, The shape of the sunspot cycle. Solar Phys. 151, 177. DOI .

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichman, E.J.: 1999, A synthesis of solar cycle prediction techniques. J. Geophys. Res. 104, 375. DOI .

    Article  Google Scholar 

  • Hoeksema, J.T.: 2010, Evolution of the large-scale magnetic field over three solar cycles. In: Kosovichev, A.G., Andrei, A.H., Rozelot, J.-P. (eds.) Solar and Stellar Variability: Impact on Earth and Planets, IAU Symposium 264, 222. DOI . ADS .

    Google Scholar 

  • Howard, R.: 1977, Large-scale solar magnetic fields. Annu. Rev. Astron. Astrophys. 15, 153. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Li, K.J., Yun, H.S., Gu, X.M.: 2001, On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. Astron. Astrophys. 368, 285. DOI .

    Article  ADS  Google Scholar 

  • McNish, A.G., Lincoln, J.V.: 1949, Prediction of sunspot numbers. Eos Trans. AGU 30, 673. DOI . ADS .

    Article  Google Scholar 

  • Muñoz-Jaramillo, A., Nandy, D., Martens, P.C.H.: 2009, Helioseismic data inclusion in solar dynamo models. Astrophys. J. 698, 461. DOI . ADS .

    Article  ADS  Google Scholar 

  • Muñoz-Jaramillo, A., Sheeley, N.R., Zhang, J., DeLuca, E.E.: 2012, Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ohl, A.I., Ohl, G.I.: 1979, A new method of very long-term prediction of solar activity. In: Donnelly, R. (ed.) Solar-Terrestrial Predictions Proceedings 2, 258. NOAA/Space Environment Laboratory. ADS .

    Google Scholar 

  • Parker, E.N.: 1977, The origin of solar activity. Annu. Rev. Astron. Astrophys. 15, 45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: 2008, Predictions of Solar Cycle 24. Solar Phys. 252, 209. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: 2014, Predicting Solar Cycle 24 using a geomagnetic precursor pair. Solar Phys. 289, 2317. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: 2016, Predictions of Solar Cycle 24: how are we doing? Space Weather 14, 10. DOI . ADS .

    Article  ADS  Google Scholar 

  • Priyal, M., Banerjee, D., Karak, B.B., Muñoz-Jaramillo, A., Ravindra, B., Choudhuri, A.R., Singh, J.: 2014, Polar network index as a magnetic proxy for the solar cycle studies. Astrophys. J. Lett. 793(1), L4. DOI .

    Article  ADS  Google Scholar 

  • Schatten, K.H.: 1990, A solar cycle timing predictor—the latitude of active regions. Solar Phys. 125, 185. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schatten, K.H.: 2005, Fair space weather for solar cycle 24. Geophys. Res. Lett. 32, L21106. DOI .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Myers, D.J., Sofia, S.: 1996, Solar activity forecast for Solar Cycle 23. Geophys. Res. Lett. 23, 605. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Pesnell, W.D.: 1993, An early solar dynamo prediction: cycle 23 ∼ cycle 22. Geophys. Res. Lett. 20, 2275. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Sofia, S.: 1987, Forecast of an exceptionally large even-numbered solar cycle. Geophys. Res. Lett. 14, 632. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Scherrer, P.H., Svalgaard, L., Wilcox, J.M.: 1978, Using Dynamo Theory to predict the sunspot number during Solar Cycle 21. Geophys. Res. Lett. 5, 411. DOI .

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Wang, Y.-M., Harvey, J.W.: 1989, The effect of newly erupting flux on the polar coronal holes. Solar Phys. 119, 323.

    Article  ADS  Google Scholar 

  • Suggs, R.J.: 2013, Future solar activity estimates for use in prediction of space environmental effects on spacecraft orbital lifetime and performance. Technical Report, NASA, Marshall Space Flight Center. File dated June 2013. http://sail.msfc.nasa.gov/current_solar_report/CurRpt.pdf .

  • Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot Cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, 1104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tapping, K.F.: 2013, The 10.7 cm solar radio flux (F10.7). Space Weather 11, 394. DOI . ADS .

    Article  ADS  Google Scholar 

  • Waldmeier, M.: 1939, Über die Struktur der Sonnenflecken. Astron. Mitt. Eidgenöss. Sternwarte Zür. 14, 439. ADS .

    ADS  Google Scholar 

  • Waldmeier, M.: 1955, Ergebnisse und Probleme der Sonnenforschung, 2. erweiterte aufl. edn. Geest & Portig, Leipzig. ADS .

    Google Scholar 

  • Zhao, J., Kosovichev, A.G., Bogart, R.S.: 2014, Solar meridional flow in the shallow interior during the rising phase of Cycle 24. Astrophys. J. Lett. 789, L7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhao, J., Bogart, R.S., Kosovichev, A.G., Duvall, T.L. Jr., Hartlep, T.: 2013, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun. Astrophys. J. Lett. 774, L29. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA’s Solar Dynamics Observatory. F10.7 values are courtesy of the Dominion Radio Astronomy Observatory. Adjusted F10.7 (normalized to 1 AU) were downloaded from the National Geophysical Data Center (NGDC, https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/noontime-flux/penticton/penticton_adjusted/listings/listing_drao_noontime-flux-adjusted_daily.txt ). The polar magnetic field data are from the Wilcox Solar Observatory ( http://wso.stanford.edu/Polar.html ) and are courtesy of J. T. Hoeksema. The Wilcox Solar Observatory is currently supported by NASA. International Sunspot Numbers were obtained from the Solar Influences Data Center (SIDC) website, http://www.sidc.be/silso/DATA/dayssnv0.dat for \(R_{Z}^{V_{1}}\) and http://www.sidc.be/silso/DATA/SN_d_tot_V2.0.txt for \(R_{Z}^{V_{2}}\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Dean Pesnell.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pesnell, W.D., Schatten, K.H. An Early Prediction of the Amplitude of Solar Cycle 25. Sol Phys 293, 112 (2018). https://doi.org/10.1007/s11207-018-1330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1330-5

Keywords

Navigation