Skip to main content
Log in

A Dynamo-based Forecast of Solar Cycle 25

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present a data-driven version of the solar cycle model of Lemerle and Charbonneau (Astrophys. J. 834, 133; 2017), which we use to forecast properties of the upcoming sunspot Cycle 25. The two free parameters of the model are fixed by requiring the model to reproduce Cycle 24 upon being driven by active region data for Cycle 23. Our forecasting model incorporates self-consistently the expected fluctuations associated with stochastic variations in properties of emerging active regions, most notably the scatter in the tilt angle of the line segment joining the opposite polarity focii of bipolar magnetic regions, as embodied in Joy’s law. By carrying out ensemble forecasts with statistically independent realizations of active region parameters, we can produce error bars that capture the impact of this physical source of fluctuations. We forecast a smoothed monthly international sunspot number (version 2.0) peaking at \(89^{+29}_{-14}\) in year \(2025.3^{+0.89}_{-1.05}\), with a 6 month onset delay in the northern hemisphere, but a peak amplitude 20% higher than in the southern hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. This database is available at https://dataverse.harvard.edu/dataverse/solardynamo. The version used in the present work was downloaded in June 2018.

  2. These data are available at www.sidc.be/silso/datafiles.

  3. These data are available at http://wso.stanford.edu.

  4. The forecasts of Iijima et al. (2017) and Upton and Hathaway (2018) are not explicitly for the ISSN, but rather for the dipole at the end of Cycle 24. Here this (and the associated error estimate) is converted to ISSN by assuming that the ratio of Cycle 24/25 ISSN is the same as the ratio of dipole strength at the minimum preceding each cycle, as these authors themselves do to estimate the Cycle 25 amplitude. Gopalswamy et al. (2018), Hawkes and Berger (2018), and Petrovay et al. (2018) do not include a quantitative error estimate with their forecasts. The Svalgaard forecast is from a presentation at the March 2018 SORCE-TSIS Sun-Climate Symposium, and is as yet unpublished but is included here with permission.

References

  • Bhowmik, P., Nandy, D.: 2018, Prediction of the strength and timing of sunspot cycle 25 reveals decadal-scale space environmental conditions. Nat. Commun. 9, 5209. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cameron, R.H., Jiang, J., Schüssler, M., Gizon, L.: 2014, Physical causes of solar cycle amplitude variability. J. Geophys. Res. 119, 680. DOI . ADS .

    Article  Google Scholar 

  • Charbonneau, P.: 2014, Solar dynamo theory. Annu. Rev. Astron. Astrophys. 52, 251. DOI . ADS .

    Article  ADS  Google Scholar 

  • Charbonneau, P., Tomczyk, S., Schou, J., Thompson, M.J.: 1998, The rotation of the solar core inferred by genetic forward modeling. Astrophys. J. 496, 1015. DOI . ADS .

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98(13), 131103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Clette, F., Lefèvre, L.: 2016, The new sunspot number: assembling all corrections. Solar Phys. 291, 2629. DOI . ADS .

    Article  ADS  Google Scholar 

  • Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. a 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dasi-Espuig, M., Solanki, S.K., Krivova, N.A., Cameron, R., Peñuela, T.: 2010, Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys. 518, A7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dikpati, M., Charbonneau, P.: 1999, A Babcock–Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dikpati, M., de Toma, G., Gilman, P.A.: 2006, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, L05102. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fan, Y.: 2009, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 6, 4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Yashiro, S., Akiyama, S.: 2018, Long-term solar activity studies using microwave imaging observations and prediction for cycle 25. J. Atmos. Solar-Terr. Phys. 176, 26. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Upton, L.A.: 2016, Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J. Geophys. Res. 121, 10. DOI . ADS .

    Article  Google Scholar 

  • Hawkes, G., Berger, M.A.: 2018, Magnetic helicity as a predictor of the solar cycle. Solar Phys. 293, 109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hazra, G., Karak, B.B., Choudhuri, A.R.: 2014, Is a deep one-cell meridional circulation essential for the flux transport solar dynamo? Astrophys. J. 782, 93. DOI . ADS .

    Article  ADS  Google Scholar 

  • Iijima, H., Hotta, H., Imada, S., Kusano, K., Shiota, D.: 2017, Improvement of solar-cycle prediction: plateau of solar axial dipole moment. Astron. Astrophys. 607, L2. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Cameron, R.H., Schüssler, M.: 2014, Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys. J. 791, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Cameron, R.H., Schüssler, M.: 2015, The cause of the weak solar cycle 24. Astrophys. J. Lett. 808, L28. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Işik, E., Cameron, R.H., Schmitt, D., Schüssler, M.: 2010, The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophys. J. 717, 597. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Wang, J.-X., Jiao, Q.-R., Cao, J.-B.: 2018, Predictability of the solar cycle over one cycle. Astrophys. J. 863, 159. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kakad, B., Kakad, A., Ramesh, D.S.: 2017, Shannon entropy-based prediction of solar cycle 25. Solar Phys. 292, 95. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karak, B.B., Miesch, M.: 2017, Solar cycle variability induced by tilt angle scatter in a Babcock–Leighton solar dynamo model. Astrophys. J. 847, 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karak, B.B., Jiang, J., Miesch, M.S., Charbonneau, P., Choudhuri, A.R.: 2014, Flux transport dynamos: from kinematics to dynamics. Space Sci. Rev. 186, 561. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemerle, A., Charbonneau, P.: 2017, A coupled \(2{\times}2\)d Babcock–Leighton solar dynamo model. II. Reference dynamo solutions. Astrophys. J. 834, 133. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemerle, A., Charbonneau, P., Carignan-Dugas, A.: 2015, A coupled \(2{\times}2\)d Babcock–Leighton solar dynamo model. I. Surface magnetic flux evolution. Astrophys. J. 810, 78. DOI . ADS .

    Article  ADS  Google Scholar 

  • Li, F.Y., Kong, D.F., Xie, J.L., Xiang, N.B., Xu, J.C.: 2018, Solar cycle characteristics and their application in the prediction of cycle 25. J. Atmos. Solar-Terr. Phys. 181, 110. DOI . ADS .

    Article  ADS  Google Scholar 

  • Macario-Rojas, A., Smith, K.L., Roberts, P.C.E.: 2018, Solar activity simulation and forecast with a flux-transport dynamo. Mon. Not. Roy. Astron. Soc. 479, 3791. DOI . ADS .

    Article  ADS  Google Scholar 

  • McClintock, B.H., Norton, A.A.: 2013, Recovering Joy’s law as a function of solar cycle, hemisphere, and longitude. Solar Phys. 287, 215. DOI . ADS .

    Article  ADS  Google Scholar 

  • Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L.A., DeLuca, E.E.: 2013, Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies. Astrophys. J. Lett. 767, L25. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nagy, M., Lemerle, A., Charbonneau, P.: 2019, Impact of rogue active regions on hemispheric asymmetry. Adv. Space Res. 63, 1425. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nagy, M., Lemerle, A., Labonville, F., Petrovay, K., Charbonneau, P.: 2017, The effect of “rogue” active regions on the solar cycle. Solar Phys. 292, 167. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: 2012, Solar cycle predictions (invited review). Solar Phys. 281, 507. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Schatten, K.H.: 2018, An early prediction of the amplitude of solar cycle 25. Solar Phys. 293, 112. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrovay, K., Nagy, M., Gerják, T., Juhász, L.: 2018, Precursors of an upcoming solar cycle at high latitudes from coronal green line data. J. Atmos. Solar-Terr. Phys. 176, 15. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rajaguru, S.P., Antia, H.M.: 2015, Meridional circulation in the solar convection zone: time-distance helioseismic inferences from four years of HMI/SDO observations. Astrophys. J. 813, 114. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sarp, V., Kilcik, A., Yurchyshyn, V., Rozelot, J.P., Ozguc, A.: 2018, Prediction of solar cycle 25: a non-linear approach. Mon. Not. Roy. Astron. Soc. 481, 2981. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Scherrer, P.H., Svalgaard, L., Wilcox, J.M.: 1978, Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys. Res. Lett. 5, 411. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schüssler, M., Caligari, P., Ferriz-Mas, A., Moreno-Insertis, F.: 1994, Instability and eruption of magnetic flux tubes in the solar convection zone. Astron. Astrophys. 281, L69. ADS .

    ADS  Google Scholar 

  • Singh, A.K., Bhargawa, A.: 2017, An early prediction of 25th solar cycle using Hurst exponent. Astrophys. Space Sci. 362, 199. DOI . ADS .

    Article  ADS  Google Scholar 

  • Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tlatova, K., Tlatov, A., Pevtsov, A., Mursula, K., Vasil’eva, V., Heikkinen, E., Bertello, L., Pevtsov, A., Virtanen, I., Karachik, N.: 2018, Tilt of sunspot bipoles in solar Cycles 15 to 24. Solar Phys. 293, 118. DOI . ADS .

    Article  ADS  Google Scholar 

  • Upton, L.A., Hathaway, D.H.: 2018, An updated solar cycle 25 prediction with AFT: the modern minimum, arXiv e-prints. ADS .

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1989, Average properties of bipolar magnetic regions during sunspot cycle 21. Solar Phys. 124, 81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Whitbread, T., Yeates, A.R., Muñoz-Jaramillo, A.: 2018, How many active regions are necessary to predict the solar dipole moment? Astrophys. J. 863, 116. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2007, Modelling the global solar corona: filament chirality observations and surface simulations. Solar Phys. 245, 87. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Nandy, D., Mackay, D.H.: 2008, Exploring the physical basis of solar cycle predictions: flux transport dynamics and persistence of memory in advection-versus diffusion-dominated solar convection zones. Astrophys. J. 673, 544. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhao, J., Bogart, R.S., Kosovichev, A.G., Duvall, T.L. Jr., Hartlep, T.: 2013, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun. Astrophys. J. Lett. 774, L29. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Shepherd, S.J., Popova, E., Zharkov, S.I.: 2015, Heartbeat of the Sun from principal component analysis and prediction of solar activity on a millennium timescale. Sci. Rep. 5, 15689. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to A. Yeates et A. Muñoz-Jaramillo for producing and maintaining their publicly available Cycle 23 – 24 active region database, again to A. Muñoz-Jaramillo for very useful discussions, and to an anonymous referee for some useful comments and suggestions. This work was supported by the Discovery Grant Program of Canada’s Natural Science and Engineering Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Charbonneau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labonville, F., Charbonneau, P. & Lemerle, A. A Dynamo-based Forecast of Solar Cycle 25. Sol Phys 294, 82 (2019). https://doi.org/10.1007/s11207-019-1480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1480-0

Keywords

Navigation