Skip to main content
Log in

Reconciling Observational Challenges to the Impulsive-Piston Shock-Excitation Scenario. I. Kinematic Challenges

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Until now, there is no consensus on the origin of coronal shock waves. Questions also remain about the patterns that govern the propagation of the presumably related disturbances observed in the extreme ultraviolet (EUV waves). We present arguments in favor of the initial excitation of the waves by the impulsive acceleration of erupting structures. We consider two puzzling events that have been known thanks to the efforts of different research teams. Using recent findings and our methods, we aim to determine what might actually have happened in these challenging events. In the first event, the expansion of the coronal mass ejection (CME) was determined by gravity starting from the low corona. The previous analysis led the authors to conclude about the flare-related origin of the associated shock wave. We also consider another event, in which an EUV wave had a strange kinematics. This was one of the weakest flares accompanied by EUV waves. Both of these challenging events have been reconciled in terms of an impulsively excited piston shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study were derived from the following public-domain resources:

Virtual Solar Observatory https://sdac.virtualsolar.org/

CDAW Data Center https://cdaw.gsfc.nasa.gov/

Space Weather Prediction Center https://www.swpc.noaa.gov/

SOHO LASCO CME Catalog https://cdaw.gsfc.nasa.gov/CME_list/

References

  • Afanasyev, A.N., Uralov, A.M.: 2011, Coronal shock waves, EUV waves, and their relation to CMEs. II. Modeling MHD shock wave propagation along the solar surface, using nonlinear geometrical acoustics. Solar Phys. 273, 479. DOI. ADS.

    Article  ADS  Google Scholar 

  • Afanasyev, A.N., Uralov, A.M., Grechnev, V.V.: 2013, Propagation of a fast magnetoacoustic shock wave in the magnetosphere of an active region. Astron. Rep. 57, 594. DOI. ADS.

    Article  ADS  Google Scholar 

  • Alissandrakis, C.E., Nindos, A., Patsourakos, S., Hillaris, A.: 2021, Multiwavelength observations of a metric type-II event. Astron. Astrophys. 654, A112. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bain, H.M., Krucker, S., Glesener, L., Lin, R.P.: 2012, Radio imaging of shock-accelerated electrons associated with an erupting plasmoid on 2010 November 3. Astrophys. J. 750, 44. DOI. ADS.

    Article  ADS  Google Scholar 

  • Balasubramaniam, K.S., Pevtsov, A.A., Neidig, D.F.: 2007, Are Moreton waves coronal phenomena? Astrophys. J. 658, 1372. DOI. ADS.

    Article  ADS  Google Scholar 

  • Biesecker, D.A., Myers, D.C., Thompson, B.J., Hammer, D.M., Vourlidas, A.: 2002, Solar phenomena associated with “EIT waves”. Astrophys. J. 569, 1009. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bogdanov, S.Y., Dreiden, G.V., Frank, A.G., Kirei, N.P., Khodzhaev, A.Z., Komissarova, I.I., Markov, V.S., Ostrovskaya, G.V., Ostrovsky, Y.I., Philippov, V.N., Savchenko, M.M., Shedova, E.N.: 1984, Plasma dynamics inside the current sheet. Phys. Scr. 30, 282. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bougeret, J.L., Goetz, K., Kaiser, M.L., Bale, S.D., Kellogg, P.J., Maksimovic, M., Monge, N., Monson, S.J., Astier, P.L., Davy, S., et al.: 2008, S/WAVES: the radio and plasma wave investigation on the STEREO mission. Space Sci. Rev. 136, 487. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cane, H.V.: 1984, The relationship between coronal transients, Type II bursts and interplanetary shocks. Astron. Astrophys. 140, 205. ADS.

    ADS  Google Scholar 

  • Cane, H.V., Erickson, W.C.: 2005, Solar type II radio bursts and IP type II events. Astrophys. J. 623, 1180. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2011, Coronal mass ejections: models and their observational basis. Living Rev. Solar Phys. 8, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622, 1202. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F., Wu, Y.: 2011, First evidence of coexisting EIT wave and coronal Moreton wave from SDO/AIA observations. Astrophys. J. Lett. 732, L20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572, L99. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, Y., Du, G., Feng, L., Feng, S., Kong, X., Guo, F., Wang, B., Li, G.: 2014, A solar Type II radio burst from coronal mass ejection–coronal ray interaction: simultaneous radio and extreme ultraviolet imaging. Astrophys. J. 787, 59. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cliver, E.W.: 2016, Flare vs. shock acceleration of high-energy protons in solar energetic particle events. Astrophys. J. 832, 128. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Nitta, N.V., Thompson, B.J., Zhang, J.: 2004, Coronal shocks of November 1997 revisited: the CME Type II timing problem. Solar Phys. 225, 105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., et al.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M.S., Crosby, N.B., Malandraki, O., Tsiropoula, G.: 2015, Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of Solar Cycle 23 events. Solar Phys. 290, 841. DOI. ADS.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Echer, E.: 2019, Solar wind and interplanetary shock parameters near Saturn’s orbit (∼10 AU). Planet. Space Sci. 165, 210. DOI. ADS.

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C.: 2008, Interplanetary conditions causing intense geomagnetic storms (Dst \(<= -100\) nT) during solar cycle 23 (1996 – 2006). J. Geophys. Res. 113, A05221. DOI. ADS.

    Article  ADS  Google Scholar 

  • Eselevich, V.G., Eselevich, M.V., Zimovets, I.V.: 2013, Blast-wave and piston shocks connected with the formation and propagation of a coronal mass ejection. Astron. Rep. 57, 142. DOI. ADS.

    Article  ADS  Google Scholar 

  • Eselevich, V.G., Eselevich, M.V., Zimovets, I.V.: 2019, Observations of a flare-generated blast wave in a pseudo coronal mass ejection event. Solar Phys. 294, 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Eselevich, V.G., Eselevich, M.V., Sadykov, V.M., Zimovets, I.V.: 2015, Evidence of a blast shock wave formation in a “CME-streamer” interaction. Adv. Space Res. 56, 2793. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fainshtein, V.G., Egorov, Y.I.: 2019, Onset of a CME-related shock within the Large-Angle Spectrometric Coronagraph (LASCO) field of view. Solar Phys. 294, 126. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feng, S.W., Chen, Y., Kong, X.L., Li, G., Song, H.Q., Feng, X.S., Liu, Y.: 2012, Radio signatures of coronal-mass-ejection-streamer interaction and source diagnostics of type II radio burst. Astrophys. J. 753, 21. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feng, S.W., Chen, Y., Kong, X.L., Li, G., Song, H.Q., Feng, X.S., Guo, F.: 2013, Diagnostics on the source properties of a Type II radio burst with spectral bumps. Astrophys. J. 767, 29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gallagher, P.T., Long, D.M.: 2011, Large-scale bright fronts in the solar corona: a review of “EIT waves”. Space Sci. Rev. 158, 365. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Thompson, W.T., Davila, J.M., Kaiser, M.L., Yashiro, S., Mäkelä, P., Michalek, G., Bougeret, J.-L., Howard, R.A.: 2009, Relation between type II bursts and CMEs inferred from STEREO observations. Solar Phys. 259, 227. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., Usoskin, I.G.: 2012, Properties of ground level enhancement events and the associated solar eruptions during Solar Cycle 23. Space Sci. Rev. 171, 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Mäkelä, P., Yashiro, S., Akiyama, S., Uddin, W., Srivastava, A.K., Joshi, N.C., Chandra, R., Manoharan, P.K., Mahalakshmi, K., Dwivedi, V.C., Jain, R., Awasthi, A.K., Nitta, N.V., Aschwanden, M.J., Choudhary, D.P.: 2013, Height of shock formation in the solar corona inferred from observations of type II radio bursts and coronal mass ejections. Adv. Space Res. 51, 1981. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P.A., Yashiro, S.: 2014, Major solar eruptions and high-energy particle events during solar cycle 24. Earth Planets Space 66, 104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V.: 2003, A method to analyze imaging radio data on solar flares. Solar Phys. 213, 103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kuzmenko, I.V.: 2020, A geoeffective CME caused by the eruption of a quiescent prominence on 29 September 2013. Solar Phys. 295, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Zandanov, V.G., Baranov, N.Y., Shibasaki, K.: 2006a, Observations of prominence eruptions with two radioheliographs, SSRT, and NoRH. Publ. Astron. Soc. Japan 58, 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Zandanov, V.G., Rudenko, G.V., Borovik, V.N., Grigorieva, I.Y., Slemzin, V.A., Bogachev, S.A., Kuzin, S.V., Zhitnik, I., Pertsov, A.A., Shibasaki, K., Livshits, M.A.: 2006b, Plasma parameters in a post-eruptive arcade observed with CORONAS-F/SPIRIT, Yohkoh/SXT, SOHO/EIT, and in microwaves. Publ. Astron. Soc. Japan 58, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Slemzin, V.A., Chertok, I.M., Kuzmenko, I.V., Shibasaki, K.: 2008, Absorption phenomena and a probable blast wave in the 13 July 2004 eruptive event. Solar Phys. 253, 263. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Afanasyev, A.N., Uralov, A.M., Chertok, I.M., Eselevich, M.V., Eselevich, V.G., Rudenko, G.V., Kubo, Y.: 2011b, Coronal shock waves, EUV waves, and their relation to CMEs. III. Shock-associated CME/EUV wave in an event with a two-component EUV transient. Solar Phys. 273, 461. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Chertok, I.M., Kuzmenko, I.V., Afanasyev, A.N., Meshalkina, N.S., Kalashnikov, S.S., Kubo, Y.: 2011a, Coronal shock waves, EUV waves, and their relation to CMEs. I. Reconciliation of “EIT waves”, type II radio bursts, and leading edges of CMEs. Solar Phys. 273, 433. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Uralov, A.M., Meshalkina, N.S., Kochanov, A.A.: 2013, An updated view of solar eruptive flares and the development of shocks and CMEs: history of the 2006 December 13 GLE-productive extreme event. Publ. Astron. Soc. Japan 65, S9. DOI. ADS.

    Article  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Chertok, I.M., Slemzin, V.A., Filippov, B.P., Egorov, Y.I., Fainshtein, V.G., Afanasyev, A.N., Prestage, N.P., Temmer, M.: 2014, A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. II. CMEs, shock waves, and drifting radio bursts. Solar Phys. 289, 1279. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Kuzmenko, I.V., Kochanov, A.A., Chertok, I.M., Kalashnikov, S.S.: 2015, Responsibility of a filament eruption for the initiation of a flare, CME, and blast wave, and its possible transformation into a bow shock. Solar Phys. 290, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Kochanov, A.A., Kuzmenko, I.V., Prosovetsky, D.V., Egorov, Y.I., Fainshtein, V.G., Kashapova, L.K.: 2016, A tiny eruptive filament as a flux-rope progenitor and driver of a large-scale CME and wave. Solar Phys. 291, 1173. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Uralov, A.M., Klein, K.-L., Kochanov, A.A.: 2017, The 26 December 2001 solar eruptive event responsible for GLE63: III. CME, shock waves, and energetic particles. Solar Phys. 292, 102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Kashapova, L.K., Kochanov, A.A., Zimovets, I.V., Uralov, A.M., Nizamov, B.A., Grigorieva, I.Y., Golovin, D.V., Litvak, M.L., Mitrofanov, I.G., Sanin, A.B.: 2018b, Radio, hard X-ray, and gamma-ray emissions associated with a far-side solar event. Solar Phys. 293, 133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Lesovoi, S.V., Kochanov, A.A., Uralov, A.M., Altyntsev, A.T., Gubin, A.V., Zhdanov, D.A., Ivanov, E.F., Smolkov, G.Y., Kashapova, L.K.: 2018a, Multi-instrument view on solar eruptive events observed with the Siberian Radioheliograph: from detection of small jets up to development of a shock wave and CME. J. Atmos. Solar-Terr. Phys. 174, 46. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kochanov, A.A., Uralov, A.M., Slemzin, V.A., Rodkin, D.G., Goryaev, F.F., Kiselev, V.I., Myshyakov, I.I.: 2019, Development of a fast CME and properties of a related interplanetary transient. Solar Phys. 294, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Uralov, A.M., Myshyakov, I.I.: 2022, Reconciling Observational Challenges to the impulsive-piston shock-excitation scenario. II. Shock waves produced in CME-less events with a null-point topology. Solar. Phys., in press.

  • Green, L.M., Török, T., Vršnak, B., Manchester, W., Veronig, A.: 2018, The origin, early evolution and predictability of solar eruptions. Space Sci. Rev. 214, 46. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. I: evaporating flare model. Solar Phys. 34, 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hudson, H.S., Khan, J.I., Lemen, J.R., Nitta, N.V., Uchida, Y.: 2003, Soft X-ray observation of a large-scale coronal wave and its exciter. Solar Phys. 212, 121. DOI. ADS.

    Article  ADS  Google Scholar 

  • Inhester, B., Birn, J., Hesse, M.: 1992, The evolution of line tied coronal arcades including a converging footpoint motion. Solar Phys. 138, 257. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 2001, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra. J. Geophys. Res. 106, 20947. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kalaivani, P.P., Prakash, O., Shanmugaraju, A., Feng, L., Lu, L., Gan, W., Michalek, G.: 2021, Analysis of type II and type III radio bursts associated with SEPs from non-interacting/interacting radio-loud CMEs. Astrophysics 64, 327. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klein, K.-L., Trottet, G.: 2001, The origin of solar energetic particle events: coronal acceleration versus shock wave acceleration. Space Sci. Rev. 95, 215. ADS.

    Article  ADS  Google Scholar 

  • Knock, S.A., Cairns, I.H.: 2005, Type II radio emission predictions: sources of coronal and interplanetary spectral structure. J. Geophys. Res. 110, A01101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumar, P., Innes, D.E.: 2013, Multiwavelength observations of an eruptive flare: evidence for blast waves and break-out. Solar Phys. 288, 255. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumar, P., Innes, D.E.: 2015, Partial reflection and trapping of a fast-mode wave in solar coronal arcade loops. Astrophys. J. Lett. 803, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumar, P., Innes, D.E., Cho, K.-S.: 2016, Flare-generated shock wave propagation through solar coronal arcade loops and an associated Type II radio burst. Astrophys. J. 828, 28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: 1987, Fluid Mechanics, Pergamon Press, Oxford.

    Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lependin, L.F.: 1978, Acoustics, Graduate School, Moscow.

    Google Scholar 

  • Liu, W., Ofman, L.: 2014, Advances in observing various coronal EUV waves in the SDO era and their seismological applications (invited review). Solar Phys. 289, 3233. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y., Luhmann, J.G., Müller-Mellin, R., Schroeder, P.C., Wang, L., Lin, R.P., Bale, S.D., Li, Y., Acuña, M.H., Sauvaud, J.-A.: 2008, A comprehensive view of the 2006 December 13 CME: from the Sun to interplanetary space. Astrophys. J. 689, 563. DOI. ADS.

    Article  ADS  Google Scholar 

  • Long, D.M., Murphy, P., Graham, G., Carley, E.P., Pérez-Suárez, D.: 2017, A statistical analysis of the solar phenomena associated with global EUV waves. Solar Phys. 292, 185. DOI. ADS.

    Article  ADS  Google Scholar 

  • Longcope, D.W., Beveridge, C.: 2007, A quantitative, topological model of reconnection and flux rope formation in a two-ribbon flare. Astrophys. J. 669, 621. DOI. ADS.

    Article  ADS  Google Scholar 

  • Low, B.C.: 1982, Self-similar magnetohydrodynamics. I – The gamma = 4/3 polytrope and the coronal transient. Astrophys. J. 254, 796. DOI. ADS.

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., Bale, S.D., Sauvaud, J.-A., Aoustin, C., Mewaldt, R.A., et al.: 2008, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 136, 117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lulić, S., Vršnak, B., Žic, T., Kienreich, I.W., Muhr, N., Temmer, M., Veronig, A.M.: 2013, Formation of coronal shock waves. Solar Phys. 286, 509. DOI. ADS.

    Article  ADS  Google Scholar 

  • Magdalenić, J., Vršnak, B., Pohjolainen, S., Temmer, M., Aurass, H., Lehtinen, N.J.: 2008, A flare-generated shock during a coronal mass ejection on 24 December 1996. Solar Phys. 253, 305. DOI. ADS.

    Article  ADS  Google Scholar 

  • Magdalenić, J., Marqué, C., Zhukov, A.N., Vršnak, B., Žic, T.: 2010, Origin of coronal shock waves associated with slow coronal mass ejections. Astrophys. J. 718, 266. DOI. ADS.

    Article  ADS  Google Scholar 

  • Magdalenić, J., Marqué, C., Zhukov, A.N., Vršnak, B., Veronig, A.: 2012, Flare-generated Type II burst without associated coronal mass ejection. Astrophys. J. 746, 152. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mancuso, S., Raymond, J.C.: 2004, Coronal transients and metric Type II radio bursts. I. Effects of geometry. Astron. Astrophys. 413, 363. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mann, G., Klassen, A., Aurass, H., Classen, H.-T.: 2003, Formation and development of shock waves in the solar corona and the near-Sun interplanetary space. Astron. Astrophys. 400, 329. DOI. ADS.

    Article  ADS  Google Scholar 

  • Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.M., Temmer, M., Roša, D.: 2007, Acceleration phase of coronal mass ejections: II. Synchronization of the energy release in the associated flare. Solar Phys. 241, 99. DOI. ADS.

    Article  ADS  Google Scholar 

  • Miklenic, C.H., Veronig, A.M., Vršnak, B.: 2009, Temporal comparison of nonthermal flare emission and magnetic-flux change rates. Astron. Astrophys. 499, 893. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moreton, G.E.: 1960, H\(\alpha\) observations of flare-initiated disturbances with velocities ∼1000 km/sec. Astron. J. 65, 494. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moses, D., Clette, F., Delaboudinière, J.-P., Artzner, G.E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A.H., Hochedez, J.F., Millier, F., et al.: 1997, EIT observations of the extreme ultraviolet Sun. Solar Phys. 175, 571. DOI. ADS.

    Article  ADS  Google Scholar 

  • Neupert, W.M.: 1968, Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. Lett. 153, L59. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nindos, A., Alissandrakis, C.E., Gelfreikh, G.B., Bogod, V.M., Gontikakis, C.: 2002, Spatially resolved microwave oscillations above a sunspot. Astron. Astrophys. 386, 658. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nindos, A., Alissandrakis, C.E., Hillaris, A., Preka-Papadema, P.: 2011, On the relationship of shock waves to flares and coronal mass ejections. Astron. Astrophys. 531, A31. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nitta, N.V., Schrijver, C.J., Title, A.M., Liu, W.: 2013, Large-scale coronal propagating fronts in solar eruptions as observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory – an ensemble study. Astrophys. J. 776, 58. DOI. ADS.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A.: 2012, On the nature and genesis of EUV waves: a synthesis of observations from SOHO, STEREO, SDO, and Hinode (invited review). Solar Phys. 281, 187. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2009, Solar release times of energetic particles in ground-level events. Astrophys. J. 693, 812. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev. 175, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reiner, M.J., Vourlidas, A., Cyr, O.C.S., Burkepile, J.T., Howard, R.A., Kaiser, M.L., Prestage, N.P., Bougeret, J.-L.: 2003, Constraints on coronal mass ejection dynamics from simultaneous radio and white-light observations. Astrophys. J. 590, 533. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rouillard, A.P., Plotnikov, I., Pinto, R.F., Tirole, M., Lavarra, M., Zucca, P., Vainio, R., Tylka, A.J., Vourlidas, A., De Rosa, M.L., et al.: 2016, Deriving the properties of coronal pressure fronts in 3D: application to the 2012 May 17 ground level enhancement. Astrophys. J. 833, 45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Saito, K., Makita, M., Nishi, K., Hata, S.: 1970, A non-spherical axisymmetric model of the solar K corona of the minimum type. Ann. Tokyo Astron. Obs. 12, 53. ADS.

    ADS  Google Scholar 

  • Shen, C., Liao, C., Wang, Y., Ye, P., Wang, S.: 2013, Source region of the decameter-hectometric type II radio burst: shock-streamer interaction region. Solar Phys. 282, 543. DOI. ADS.

    Article  ADS  Google Scholar 

  • Su, W., Cheng, X., Ding, M.D., Chen, P.F., Sun, J.Q.: 2015, A Type II radio burst without a coronal mass ejection. Astrophys. J. 804, 88. DOI. ADS.

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A.M., Vršnak, B., Rybák, J., Gömöry, P., Stoiser, S., Maričić, D.: 2008, Acceleration in fast halo CMEs and synchronized flare HXR bursts. Astrophys. J. Lett. 673, L95. DOI. ADS.

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A.M., Kontar, E.P., Krucker, S., Vršnak, B.: 2010, Combined STEREO/RHESSI study of coronal mass ejection acceleration and particle acceleration in solar flares. Astrophys. J. 712, 1410. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thalmann, J.K., Su, Y., Temmer, M., Veronig, A.M.: 2015, The confined X-class flares of solar active region 2192. Astrophys. J. Lett. 801, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Gurman, J.B., Neupert, W.M., Newmark, J.S., Delaboudinière, J.-P., Cyr, O.C.S., Stezelberger, S., Dere, K.P., Howard, R.A., Michels, D.J.: 1999, SOHO/EIT observations of the 1997 April 7 coronal transient: possible evidence of coronal Moreton waves. Astrophys. J. Lett. 517, L151. DOI. ADS.

    Article  ADS  Google Scholar 

  • Trottet, G., Samwel, S., Klein, K.-L., Dudok de Wit, T., Miteva, R.: 2015, Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Solar Phys. 290, 819. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uchida, Y.: 1968, Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Solar Phys. 4, 30. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uchida, Y.: 1974, Behaviour of the flare-produced coronal MHD wavefront and the occurrence of type II radio bursts. Solar Phys. 39, 431. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uralov, A.M., Grechnev, V.V., Hudson, H.S.: 2005, Initial localization and kinematic characteristics of the structural components of a coronal mass ejection. J. Geophys. Res. 110, A05104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uralov, A.M., Grechnev, V.V., Ivanukin, L.A.: 2019, Self-similar piston-shock and CME. Solar Phys. 294, 113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uralov, A.M., Lesovoi, S.V., Zandanov, V.G., Grechnev, V.V.: 2002, Dual-filament initiation of a coronal mass ejection: observations and model. Solar Phys. 208, 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uralova, S.V., Uralov, A.M.: 1994, WKB approach to the problem of magnetohydrodynamic shock propagation through the heliospheric current sheet. Solar Phys. 152, 457. DOI. ADS.

    Article  ADS  Google Scholar 

  • Veselovsky, I.S., Panasyuk, M.I., Avdyushin, S.I., Bazilevskaya, G.A., Belov, A.V., Bogachev, S.A., Bogod, V.M., Bogomolov, A.V., Bothmer, V., Boyarchuk, K.A., et al.: 2004, Solar and heliospheric phenomena in October-November 2003: causes and effects. Cosm. Res. 42, 435. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vourlidas, A., Wu, S.T., Wang, A.H., Subramanian, P., Howard, R.A.: 2003, Direct detection of a coronal mass ejection-associated shock in Large Angle and Spectrometric Coronagraph experiment white-light images. Astrophys. J. 598, 1392. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2016, Solar eruptions: the CME-flare relationship. Astron. Nachr. 337, 1002. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vršnak, B., Cliver, E.W.: 2008, Origin of coronal shock waves. Invited review. Solar Phys. 253, 215. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vršnak, B., Warmuth, A., Brajša, R., Hanslmeier, A.: 2002, Flare waves observed in Helium I 10 830 Å. A link between H\(\alpha\) Moreton and EIT waves. Astron. Astrophys. 394, 299. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warmuth, A.: 2007. In: Klein, K.-L., MacKinnon, A.L. (eds.) Large-Scale Waves and Shocks in the Solar Corona 725, 107. ADS.

    Google Scholar 

  • Warmuth, A.: 2010, Large-scale waves in the solar corona: the continuing debate. Adv. Space Res. 45, 527. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warmuth, A.: 2015, Large-scale globally propagating coronal waves. Living Rev. Solar Phys. 12, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warmuth, A., Mann, G.: 2011, Kinematical evidence for physically different classes of large-scale coronal EUV waves. Astron. Astrophys. 532, A151. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warmuth, A., Mann, G., Aurass, H.: 2005, First soft X-ray observations of global coronal waves with the GOES Solar X-ray Imager. Astrophys. J. Lett. 626, L121. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warmuth, A., Vršnak, B., Aurass, H., Hanslmeier, A.: 2001, Evolution of two EIT/H\(\alpha\) Moreton waves. Astrophys. J. Lett. 560, L105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004a, A multiwavelength study of solar flare waves. I. Observations and basic properties. Astron. Astrophys. 418, 1101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004b, A multiwavelength study of solar flare waves. II. Perturbation characteristics and physical interpretation. Astron. Astrophys. 418, 1117. DOI. ADS.

    Article  ADS  Google Scholar 

  • White, S.M., Thompson, B.J.: 2005, High-cadence radio observations of an EIT wave. Astrophys. J. Lett. 620, L63. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J. 559, 452. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhukov, A.N., Auchère, F.: 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys. 427, 705. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhukov, A.N., Rodriguez, L., de Patoul, J.: 2009, STEREO/SECCHI observations on 8 December 2007: evidence against the wave hypothesis of the EIT wave origin. Solar Phys. 259, 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Žic, T., Vršnak, B., Temmer, M., Jacobs, C.: 2008, Cylindrical and spherical pistons as drivers of MHD shocks. Solar Phys. 253, 237. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zimovets, I., Vilmer, N., Chian, A.C.-L., Sharykin, I., Struminsky, A.: 2012, Spatially resolved observations of a split-band coronal Type II radio burst. Astron. Astrophys. 547, A6. DOI. ADS.

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Temmer and J. Magdalenić for useful discussions and all authors of previously published articles that studied the events in question. We are grateful to the anonymous reviewer for useful remarks.

We thank the NASA’s STEREO/SECCHI science and instrument teams, the science and instrument teams of EIT and LASCO on SOHO, the US AF RSTN network, and the GOES satellites for the data used here. We are grateful to the team maintaining the CME catalogs at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA.

The analysis and consideration of the 8 December 2007 event, the measurements of fast MHD waves, and discussion of the results was funded by the Russian Science Foundation under grant No. 21-72-00039 (V. Kiselev: Sections 4 and 5). The generalization of basic concepts and methods and the analysis of the 24 December 1996 event were financially supported by the Ministry of Science and Higher Education of the Russian Federation (V. Grechnev, A. Uralov: Sections 2 and 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kiselev.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below are the links to the electronic supplementary material.

Two successive eruptions during the 8 December 2007 event. (MPG 3.2 MB)

(MPG 2.6 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grechnev, V.V., Kiselev, V.I. & Uralov, A.M. Reconciling Observational Challenges to the Impulsive-Piston Shock-Excitation Scenario. I. Kinematic Challenges. Sol Phys 297, 106 (2022). https://doi.org/10.1007/s11207-022-02041-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02041-1

Keywords

Navigation