Skip to main content
Log in

Relationship between Solar Energetic Particles and Properties of Flares and CMEs: Statistical Analysis of Solar Cycle 23 Events

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A statistical analysis of the relationship between solar energetic particles (SEPs) and properties of solar flares and coronal mass ejections (CMEs) is presented. SEP events during Solar Cycle 23 are selected that are associated with solar flares originating in the visible hemisphere of the Sun and that are at least of magnitude M1. Taking into account all flares and CMEs that occurred during this period, the probability for the occurrence of an SEP event near Earth is determined. A strong rise of this probability is observed for increasing flare intensities, more western locations, higher CME speeds, and halo CMEs. The correlations between the proton peak flux and these solar parameters are derived for a low (> 10 MeV) and high (> 60 MeV) energy range excluding any flux enhancement due to the passage of fast interplanetary shocks. The obtained correlation coefficients are 0.55±0.07 (0.63±0.06) with flare intensity, and 0.56±0.08 (0.40±0.09) with CME speed for E>10 MeV (E>60 MeV). For both energy ranges, the correlations with flare longitude and CME width are very weak or non-existent. Furthermore, the occurrence probabilities, correlation coefficients, and mean peak fluxes are derived in multi-dimensional bins combining the aforementioned solar parameters. The correlation coefficients are also determined in different proton energy channels ranging from 5 to 200 MeV. The results show that the correlation between the proton peak flux and the CME speed decreases with energy, while the correlation with the flare intensity shows the opposite behaviour. Furthermore, the correlation with the CME speed is stronger than the correlation with the flare intensity below 15 MeV and becomes weaker above 20 MeV. When the enhancements in the flux profiles due to interplanetary shocks are not excluded, only a small but not very significant change is observed in the correlation coefficients between the proton peak flux below 7 MeV and the CME speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Similar content being viewed by others

References

  • Belov, A., Garcia, H., Kurt, V., Mavromichalaki, H., Gerontidou, M.: 2005, Proton enhancements and their relation to the X-ray flares during the three last solar cycles. Solar Phys. 229, 135. DOI .

    ADS  Google Scholar 

  • Cane, H.V.: 1995, The structure and evolution of interplanetary shocks and the relevance for particle acceleration. Nucl. Phys. B, Proc. Suppl. 39, 35. DOI .

    Article  ADS  Google Scholar 

  • Cane, H.V., McGuire, R.E., von Rosenvinge, T.T.: 1986, Two classes of solar energetic particle events associated with impulsive and long-duration soft X-ray flares. Astrophys. J. 301, 448. DOI .

    Article  ADS  Google Scholar 

  • Cane, H.V., Reames, D.V., von Rosenvinge, T.T.: 1988, The role of interplanetary shocks in the longitude distribution of solar energetic particles. J. Geophys. Res. 93, 9555. DOI .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., von Rosenvinge, T.T.: 2010, A study of solar energetic particle events of 1997–2006: Their composition and associations. J. Geophys. Res. 115, 8101. DOI .

    Article  Google Scholar 

  • Channok, C., Ruffolo, D., Desai, M.I., Mason, G.M.: 2005, Finite-time shock acceleration of energetic storm particles. Astrophys. J. Lett. 633, L53. DOI .

    Article  ADS  Google Scholar 

  • Cliver, E.W., Ling, A.G., Belov, A., Yashiro, S.: 2012, Size distributions of solar flares and solar energetic particle events. Astrophys. J. Lett. 756, L29. DOI .

    Article  ADS  Google Scholar 

  • Crosby, N.B., Heynderickx, D., Jiggens, P., Aran A., Sanahuja B., Truscott, P., Lei, F., Jacobs, J., Poedts, S., Gabriel, S., Sandberg, I., Glover, A., Hilgers, A.: 2014, SEPEM: a tool for statistical modelling the solar energetic particle environment. Space Weather, submitted.

  • Crosby, N.B., Veronig, A., Robbrecht, E., Vrsnak, B., Vennerstrom, S., Malandraki, O., Dalla, S., Rodriguez, L., Srivastava, N., Hesse, M., Odstrcil, D., COMESEP Consortium: 2012, Forecasting the space weather impact: The COMESEP project. In: Hu, Q., Li, G., Zank, G.P., Ao, X., Verkhoglyadova, O., Adams, J.H. (eds.) Amer. Inst. Physics. C. S. 1500, 159. DOI .

    Google Scholar 

  • Dalla, S., Agueda, N.: 2010, Role of latitude of source region in Solar Energetic Particle events. Twelfth Int. Solar Wind Conf. 1216, 613. DOI .

    ADS  Google Scholar 

  • Dumbović, M., Devos, A., Vršnak, B., Sudar, D., Rodriguez, L., Ruždjak, D., Leer, K., Vennerstrøm, S., Veronig, A.M., Robbrecht, E.: 2015, Geoeffectiveness of Coronal Mass Ejections in the SOHO era. Solar Phys. 290, 579. DOI .

    ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Kaiser, M.L., Howard, R.A., Bougeret, J.L.: 2008, Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. Ann. Geophys. 26, 3033. DOI .

    Article  ADS  Google Scholar 

  • Hwang, J., Cho, K.S., Moon, Y.J., Kim, R.S., Park, Y.D.: 2010, Solar proton events during the solar cycle 23 and their association with CME parameters. Acta Astron. 67, 353.

    Article  Google Scholar 

  • Jiggens, P.T.A., Gabriel, S.B., Heynderickx, D., Crosby, N., Glover, A., Hilgers, A.: 2012, ESA SEPEM project: peak flux and fluence model. IEEE Trans. Nucl. Sci. 59, 1066. DOI .

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 2001, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra. J. Geophys. Res. 106, 20947. DOI .

    Article  ADS  Google Scholar 

  • Kallenrode, M.B.: 2003, Current views on impulsive and gradual solar energetic particle events. J. Phys. G, Nucl. Phys. 29, 965.

    ADS  Google Scholar 

  • Kocharov, L., Laitinen, T., Usoskin, I., Vainio, R.: 2014, Transmission and emission of solar energetic particles in semi-transparent shocks. Astrophys. J. Lett. 787, L21. DOI .

    Article  ADS  Google Scholar 

  • Kurt, V., Belov, A., Mavromichalaki, H., Gerontidou, M.: 2004, Statistical analysis of solar proton events. Ann. Geophys. 22, 2255. DOI .

    Article  ADS  Google Scholar 

  • Laurenza, M., Cliver, E.W., Hewitt, J., Storini, M., Ling, A.G., Balch, C.C., Kaiser, M.L.: 2009, A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7, 4008. DOI .

    Article  ADS  Google Scholar 

  • Miteva, R., Klein, K.L., Malandraki, O., Dorrian, G.: 2013, Solar energetic particle events in the 23rd solar cycle: interplanetary magnetic field configuration and statistical relationship with flares and CMEs. Solar Phys. 282, 579. DOI .

    ADS  Google Scholar 

  • Park, J., Moon, Y.J., Gopalswamy, N.: 2012, Dependence of solar proton events on their associated activities: Coronal mass ejection parameters. J. Geophys. Res. 117, 8108. DOI .

    Article  Google Scholar 

  • Park, J., Moon, Y.J., Lee, D.H., Youn, S.: 2010, Dependence of solar proton events on their associated activities: Flare parameters. J. Geophys. Res. (Space Phys.) 115(A14), 10105. DOI .

    Article  ADS  Google Scholar 

  • Reames, D.V.: 1988, Bimodal abundances in the energetic particles of solar and interplanetary origin. Astrophys. J. Lett. 330, L71. DOI .

    Article  ADS  Google Scholar 

  • Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413. DOI .

    ADS  Google Scholar 

  • Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev. 175, 53. DOI .

    ADS  Google Scholar 

  • Richardson, I.G., von Rosenvinge, T.T., Cane, H.V., Christian, E.R., Cohen, C.M.S., Labrador, A.W., Leske, R.A., Mewaldt, R.A., Wiedenbeck, M.E., Stone, E.C.: 2014, > 25 MeV proton events observed by the High Energy Telescopes on the STEREO A and B spacecraft and/or at Earth during the first ∼ seven years of the STEREO mission. Solar Phys. 289, 3059. DOI .

    ADS  Google Scholar 

  • Trottet, G., Samwel, S., Klein, K.L., Dudok de Wit, T., Miteva, R.: 2014, Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Solar Phys. DOI .

    Google Scholar 

  • Van Hollebeke, M.A.I., Ma Sung, L.S., McDonald, F.B.: 1975, The variation of solar proton energy spectra and size distribution with heliolongitude. Solar Phys. 41, 189. DOI .

    ADS  Google Scholar 

  • Wall, J.V., Jenkins, C.R.: 2003, Practical Statistics for Astronomers. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Wang, R.: 2006, Statistical characteristics of solar energetic proton events from January 1997 to June 2005. Astropart. Phys. 26, 202. DOI .

    Article  ADS  Google Scholar 

  • Xapsos, M.A., Barth, J.L., Stassinopoulos, E.G., Messenger, S.R., Walters, R.J., Summers, G.P., Burke, E.A.: 2000, Characterizing solar proton energy spectra for radiation effects applications. IEEE Trans. Nucl. Sci. 47, 2218. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Union Seventh Framework Programme (FP7/2007 – 2013) under grant agreement n. 263252 [COMESEP]. We also acknowledge the ESA SEPEM reference proton dataset. The authors are grateful for the detailed comments and suggestions received from the anonymous referee which helped to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dierckxsens.

Appendix

Appendix

See Tables 4 – 17.

Table 4 The SSE list and associated solar parameters as described in Section 2.2 containing the following information: the SEP onset date and time, the integral peak flux for E>10 MeV and E>60 MeV, the flare magnitude and location, and the CME speed and width.
Table 5 Probabilities of SEP occurrence and their respective errors as a function of flare magnitude derived from the CRR2010 list (roman font) and the SSE list (italic font).
Table 6 Probabilities of SEP occurrence and their respective errors as a function of flare magnitude and flare longitude derived from the CRR2010 list (roman font) and the SSE list (italic font).
Table 7 Probabilities of SEP occurrence and their respective errors as a function of flare magnitude for halo CMEs.
Table 8 Probabilities of SEP occurrence and their respective errors as a function of flare magnitude and CME velocity for non-halo CMEs.
Table 9 Probabilities of SEP occurrence and their respective errors as a function of flare magnitude and longitude for halo CMEs.
Table 10 Probabilities of SEP occurrence and their respective errors as a function of flare magnitude, flare longitude, and CME velocity for non-halo CMEs.
Table 11 Probabilities of SEP occurrence and their respective errors as a function of CME velocity for all CMEs, non-halo, and halo CMEs.
Table 12 Mean and RMS of the logarithm of the proton peak flux for E>10 MeV and E>60 MeV in the five flare magnitude bins. Peak fluxes are expressed as log(cm−2 s−1 sr−1).
Table 13 Mean and RMS of the logarithm of the proton peak flux for E>10 MeV and E>60 MeV in the five CME speed bins. Peak fluxes are expressed as log(cm−2 s−1 sr−1).
Table 14 Mean and RMS of the logarithm of the proton peak flux in the nine flare magnitude and location bins. Peak fluxes are expressed as log(cm−2 s−1 sr−1) for E>10 MeV and E>60 MeV.
Table 15 Mean and RMS of the logarithm of the proton peak flux in the nine flare magnitude and CME speed bins. Peak fluxes are expressed as log(cm−2 s−1 sr−1) for E>10 MeV and E>60 MeV.
Table 16 Mean and RMS of the logarithm of the proton peak flux in the nine flare magnitude and CME width bins. Peak fluxes are expressed as log(cm−2 s−1 sr−1) for E>10 MeV and E>60 MeV.
Table 17 Mean and RMS of the logarithm of the proton peak flux in the six CME speed and width bins. Peak fluxes are expressed as log(cm−2 s−1 sr−1) for E>10 MeV and E>60 MeV.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dierckxsens, M., Tziotziou, K., Dalla, S. et al. Relationship between Solar Energetic Particles and Properties of Flares and CMEs: Statistical Analysis of Solar Cycle 23 Events. Sol Phys 290, 841–874 (2015). https://doi.org/10.1007/s11207-014-0641-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0641-4

Keywords

Navigation