Skip to main content
Log in

Relationships Between the Spectra of Near-Earth Proton Enhancements, Hard X-Ray Bursts, and CME Speeds

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Some studies propose the transfer of flare-accelerated protons in an erupting flux rope until its reconnection with an open structure releases the trapped protons. Coulomb collisions in the dense flux-rope body deplete the low-energy part of the proton spectrum. On the other hand, shock acceleration progressively replenishes this part of the spectrum. These processes form a double power-law proton spectrum that is usually observed at the Earth’s orbit. We analyze the correlations between the slopes of near-Earth proton spectra below and above the break energy, on the one hand, and photon indices of the corresponding hard X-ray (HXR) bursts and speeds of associated coronal mass ejections (CMEs), on the other hand. We use catalogs of proton events in 1991 – 2006, HXR spectra obtained by Yohkoh and the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), and CME catalogs. Significant correlations have been found between the proton spectral slopes i) above the break energy and HXR spectral indices (0.86), and ii) below the break energy and CME speeds (−0.75). The results indicate a statistical predominance of flare acceleration at higher proton energies and shock acceleration at their lower energies. The highest-energy proton spectra reconstructed in ground-level events exhibit the second break with the steepest slope above it. Neither this slope nor the second-break energy correlates with any other parameter. This peculiarity requires understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Ackermann, M., Ajello, M., Albert, A., Allafort, A., Baldini, L., Barbiellini, G., Bastieri, D., Bechtol, K., Bellazzini, R., Bissaldi, E., et al.: 2014, High-energy gamma-ray emission from solar flares: summary of Fermi Large Area Telescope detections and analysis of two M-class flares. Astrophys. J. 787, 15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ajello, M., Baldini, L., Bastieri, D., Bellazzini, R., Berretta, A., Bissaldi, E., Blandford, R.D., Bonino, R., Bruel, P., Buson, S., et al.: 2021, First Fermi-LAT solar flare catalog. Astrophys. J. Suppl. Ser. 252, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Akinian, S.T., Alibegov, M.M., Kozlovskii, V.D., Chertok, I.M.: 1978, On quantitative diagnostics of proton bursts from characteristics of microwave radio bursts at \(\approx9~\text{GHz}\) frequency. Geomagn. Aeron. 18, 410. ADS.

    ADS  Google Scholar 

  • Aptekar, R.L., Frederiks, D.D., Golenetskii, S.V., Ilynskii, V.N., Mazets, E.P., Panov, V.N., Sokolova, Z.J., Terekhov, M.M., Sheshin, L.O., Cline, T.L., Stilwell, D.E.: 1995, Konus-W gamma-ray burst experiment for the GGS Wind spacecraft. Space Sci. Rev. 71, 265. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2012, GeV particle acceleration in solar flares and ground level enhancement (GLE) events. Space Sci. Rev. 171, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Band, D., Matteson, J., Ford, L., Schaefer, B., Palmer, D., Teegarden, B., Cline, T., Briggs, M., Paciesas, W., Pendleton, G., Fishman, G., Kouveliotou, C., Meegan, C., Wilson, R., Lestrade, P.: 1993, BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys. J. 413, 281. DOI. ADS.

    Article  ADS  Google Scholar 

  • Belov, A.: 2009, Properties of solar X-ray flares and proton event forecasting. Adv. Space Res. 43, 467. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bhatt, N.J., Jain, R., Awasthi, A.K.: 2013, The energetic relationship among geoeffective solar flares, associated CMEs and SEPs. Res. Astron. Astrophys. 13, 978. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bruno, A., Bazilevskaya, G.A., Boezio, M., Christian, E.R., de Nolfo, G.A., Martucci, M., Merge’, M., Mikhailov, V.V., Munini, R., Richardson, I.G., et al.: 2018, Solar energetic particle events observed by the PAMELA mission. Astrophys. J. 862, 97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carr, J.R.: 2012, Orthogonal regression: a teaching perspective. Int. J. Math. Educ. Sci. Technol. 43, 134. DOI. ADS.

    Article  MathSciNet  MATH  Google Scholar 

  • Castelli, J.P., Barron, W.R.: 1977, A catalog of solar radio bursts 1966 – 1976 having spectral characteristics predictive of proton activity. J. Geophys. Res. 82, 1275. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chertok, I.M.: 1990, On the correlation between the solar gamma-ray line emission, radio bursts and proton fluxes in the interplanetary space. Astron. Nachr. 311, 379. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chertok, I.M., Grechnev, V.V., Meshalkina, N.S.: 2009, On the correlation between spectra of solar microwave bursts and proton fluxes near the Earth. Astron. Rep. 53, 1059. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chupp, E.L., Ryan, J.M.: 2009, High energy neutron and pion-decay gamma-ray emissions from solar flares. Res. Astron. Astrophys. 9, 11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cliver, E.W.: 2006, The unusual relativistic solar proton events of 1979 August 21 and 1981 May 10. Astrophys. J. 639, 1206. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cliver, E.W.: 2016, Flare vs. shock acceleration of high-energy protons in solar energetic particle events. Astrophys. J. 832, 128. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Kahler, S.W., Reames, D.V.: 2004, Coronal shocks and solar energetic proton events. Astrophys. J. 605, 902. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Forrest, D.J., Cane, H.V., Reames, D.V., McGuire, R.E., von Rosenvinge, T.T., Kane, S.R., MacDowall, R.J.: 1989, Solar flare nuclear gamma rays and interplanetary proton events. Astrophys. J. 343, 953. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Kahler, S.W., Kazachenko, M., Shimojo, M.: 2019, The disappearing solar filament of 2013 September 29 and its large associated proton event: implications for particle acceleration at the Sun. Astrophys. J. 877, 11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Hayakawa, H., Love, J.J., Neidig, D.F.: 2020, On the size of the flare associated with the solar proton event in 774 AD. Astrophys. J. 903, 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Croom, D.L.: 1971, Forecasting the intensity of solar proton events from the time characteristics of solar microwave bursts. Solar Phys. 19, 171. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M.S., Crosby, N.B., Malandraki, O., Tsiropoula, G.: 2015, Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Solar Phys. 290, 841. DOI. ADS.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dulk, G.A., Marsh, K.A.: 1982, Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. Astrophys. J. 259, 350. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ellison, D.C., Ramaty, R.: 1985, Shock acceleration of electrons and ions in solar flares. Astrophys. J. 298, 400. DOI. ADS.

    Article  ADS  Google Scholar 

  • Glesener, L., Krucker, S., Bain, H.M., Lin, R.P.: 2013, Observation of heating by flare-accelerated electrons in a solar coronal mass ejection. Astrophys. J. Lett. 779, L29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., Usoskin, I.G.: 2012, Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev. 171, 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Mäkelä, P., Yashiro, S., Akiyama, S., Uddin, W., Srivastava, A.K., Joshi, N.C., Chandra, R., Manoharan, P.K., et al.: 2013, Height of shock formation in the solar corona inferred from observations of type II radio bursts and coronal mass ejections. Adv. Space Res. 51, 1981. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Akiyama, S., Yashiro, S., Xie, H., Thakur, N., Kahler, S.W.: 2015, Large solar energetic particle events associated with filament eruptions outside of active regions. Astrophys. J. 806, 8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kuzmenko, I.V.: 2020, A geoeffective CME caused by the eruption of a quiescent prominence on 29 September 2013. Solar Phys. 295, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kurt, V.G., Chertok, I.M., Uralov, A.M., Nakajima, H., Altyntsev, A.T., Belov, A.V., Yushkov, B.Y., Kuznetsov, S.N., Kashapova, L.K., Meshalkina, N.S., Prestage, N.P.: 2008, An extreme solar event of 20 January 2005: properties of the flare and the origin of energetic particles. Solar Phys. 252, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Chertok, I.M., Kuzmenko, I.V., Afanasyev, A.N., Meshalkina, N.S., Kalashnikov, S.S., Kubo, Y.: 2011, Coronal shock waves, EUV waves, and their relation to CMEs. I. Reconciliation of “EIT waves”, Type II radio bursts, and leading edges of CMEs. Solar Phys. 273, 433. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Uralov, A.M., Meshalkina, N.S., Kochanov, A.A.: 2013a, An updated view of solar eruptive flares and the development of shocks and CMEs: history of the 2006 December 13 GLE-productive extreme event. Publ. Astron. Soc. Japan 65, S9. DOI. ADS.

    Article  Google Scholar 

  • Grechnev, V.V., Meshalkina, N.S., Chertok, I.M., Kiselev, V.I.: 2013b, Relations between strong high-frequency microwave bursts and proton events. Publ. Astron. Soc. Japan 65, S4. DOI. ADS.

    Article  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Meshalkina, N.S., Chertok, I.M.: 2015, Relations between microwave bursts and near-Earth high-energy proton enhancements and their origin. Solar Phys. 290, 2827. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Uralov, A.M., Klein, K.-L., Kochanov, A.A.: 2017a, The 26 December 2001 solar eruptive event responsible for GLE63: III. CME, shock waves, and energetic particles. Solar Phys. 292, 102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V., Uralov, A.M., Kiselev, V.I., Kochanov, A.A.: 2017b, The 26 December 2001 solar eruptive event responsible for GLE63. II. Multi-loop structure of microwave sources in a major long-duration flare. Solar Phys. 292, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Lesovoi, S.V., Kochanov, A.A., Uralov, A.M., Altyntsev, A.T., Gubin, A.V., Zhdanov, D.A., Ivanov, E.F., Smolkov, G.Y., Kashapova, L.K.: 2018, Multi-instrument view on solar eruptive events observed with the Siberian Radioheliograph: from detection of small jets up to development of a shock wave and CME. J. Atmos. Solar-Terr. Phys. 174, 46. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kochanov, A.A., Uralov, A.M., Slemzin, V.A., Rodkin, D.G., Goryaev, F.F., Kiselev, V.I., Myshyakov, I.I.: 2019, Development of a fast CME and properties of a related interplanetary transient. Solar Phys. 294, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hannah, I.G., Kontar, E.P.: 2011, The spectral difference between solar flare HXR coronal and footpoint sources due to wave-particle interactions. Astron. Astrophys. 529, A109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harper, W.V.: 2016, Reduced Major Axis Regression, Wiley, New York, 1. DOI.

    Book  Google Scholar 

  • Kahler, S.W.: 1982, The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. 87, 3439. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kahler, S.W., Kazachenko, M., Lynch, B.J., Welsch, B.T.: 2017, Flare magnetic reconnection fluxes as possible signatures of flare contributions to gradual SEP events. In: 16th AIAC: Turbulence, Structures, and Particle Acceleration Throughout the Heliosphere and Beyond, J. Phys. CS-900, 012011. DOI. ADS.

    Chapter  Google Scholar 

  • Kallenrode, M.-B.: 2003, Current views on impulsive and gradual solar energetic particle events. J. Phys. G, Nucl. Phys. 29, 965. ADS.

    Article  ADS  Google Scholar 

  • Kane, S.R.: 1974, Impulsive (flash) phase of solar flares: hard X-ray, microwave, EUV and optical observations. In: Newkirk, G.A. (ed.) Coronal Disturbances, IAU Symp. 57, Reidel, Dordrecht, 105. ADS.

    Chapter  Google Scholar 

  • Klein, K.-L.: 2021, Radio astronomical tools for the study of solar energetic particles II. Time-extended acceleration at subrelativistic and relativistic energies. Front. Astron. Space Sci. 7, 93. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klein, K.-L., Trottet, G.: 2001, The origin of solar energetic particle events: coronal acceleration versus shock wave acceleration. Space Sci. Rev. 95, 215. ADS.

    Article  ADS  Google Scholar 

  • Kocharov, L., Pohjolainen, S., Mishev, A., Reiner, M.J., Lee, J., Laitinen, T., Didkovsky, L.V., Pizzo, V.J., Kim, R., Klassen, A., Karlicky, M., Cho, K.-S., Gary, D.E., Usoskin, I., Valtonen, E., Vainio, R.: 2017, Investigating the origins of two extreme solar particle events: proton source profile and associated electromagnetic emissions. Astrophys. J. 839, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Koldobskiy, S., Raukunen, O., Vainio, R., Kovaltsov, G.A., Usoskin, I.: 2021, New reconstruction of event-integrated spectra (spectral fluences) for major solar energetic particle events. Astron. Astrophys. 647, A132. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kundu, M.R., Grechnev, V.V., White, S.M., Schmahl, E.J., Meshalkina, N.S., Kashapova, L.K.: 2009, High-energy emission from a solar flare in hard X-rays and microwaves. Solar Phys. 260, 135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuznetsov, S.N., Kurt, V.G., Myagkova, I.N., Yushkov, B.Y., Kudela, K.: 2006, Gamma-ray emission and neutrons from solar flares recorded by the SONG instrument in 2001 – 2004. Solar Syst. Res. 40, 104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuznetsov, S.N., Kurt, V.G., Yushkov, B.Y., Kudela, K., Galkin, V.I.: 2011, Gamma-ray and high-energy-neutron measurements on CORONAS-F during the solar flare of 28 October 2003. Solar Phys. 268, 175. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuznetsov, S.N., Kurt, V.G., Yushkov, B.Y., Myagkova, I.N., Galkin, V.I., Kudela, K.: 2014, Protons acceleration in solar flares: the results of the analysis of gamma-emission and neutrons recorded by the SONG instrument onboard the CORONAS-F satellite. In: Kuznetsov, V. (ed.) The Coronas-F Space Mission, Astrophys. Space Sci. Lib. 400, Springer, Heidelberg, 301. DOI. ADS.

    Chapter  Google Scholar 

  • Li, G., Lee, M.A.: 2015, Scatter-dominated interplanetary transport of solar energetic particles in large gradual events and the formation of double power-law differential fluence spectra of ground-level events during Solar Cycle 23. Astrophys. J. 810, 82. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Logachev, Y.I., Bazilevskaya, G.A., Vashenyuk, E.V., Daibog, E.I., Ishkov, V.N., Lazutin, L.L., Miroshnichenko, L.I., Nazarova, M.N., Petrenko, I.E., Stupishin, A.G., Surova, G.M., Yakovchuk, O.S.: 2016, Catalogue of Solar Proton Events in the 23rd Cycle of Solar Activity, Geophysical Center RAS, Moscow. DOI.

    Book  Google Scholar 

  • Masson, S., Antiochos, S.K., DeVore, C.R.: 2013, A model for the escape of solar-flare-accelerated particles. Astrophys. J. 771, 82. DOI. ADS.

    Article  ADS  Google Scholar 

  • McCracken, K.G., Moraal, H., Stoker, P.H.: 2008, Investigation of the multiple-component structure of the 20 January 2005 cosmic ray ground level enhancement. J. Geophys. Res., Space Phys. 113, A12101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Melnikov, V.F., Podstrigach, T.S., Dajbog, E.I., Stolpovskij, V.G.: 1991, Nature of the relationship between the fluxes of solar cosmic ray electrons and protons and the parameters of microwave bursts. Cosm. Res. 29, 87. ADS.

    ADS  Google Scholar 

  • Metcalf, T.R., Alexander, D.: 1999, Coronal trapping of energetic flare particles: Yohkoh/HXT observations. Astrophys. J. 522, 1108. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mewaldt, R.A., Looper, M.D., Cohen, C.M.S., Haggerty, D.K., Labrador, A.W., Leske, R.A., Mason, G.M., Mazur, J.E., von Rosenvinge, T.T.: 2012, Energy spectra, composition, and other properties of ground-level events during solar cycle 23. Space Sci. Rev. 171, 97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Miller, J.A., Ramaty, R.: 1989, Relativistic electron transport and bremsstrahlung production in solar flares. Astrophys. J. 344, 973. DOI. ADS.

    Article  ADS  Google Scholar 

  • Miroshnichenko, L.: 2015, Solar Cosmic Rays, Astrophys. Space Sci. Lib. 405, Springer, Cham. DOI. ADS.

    Book  Google Scholar 

  • Moraal, H., McCracken, K.G.: 2012, The time structure of ground level enhancements in Solar Cycle 23. Space Sci. Rev. 171, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Núñez, M., Klein, K.-L., Heber, B., Malandraki, O.E., Zucca, P., Labrens, J., Reyes-Santiago, P., Kuehl, P., Pavlos, E.: 2018, HESPERIA forecasting tools: real-time and post-event. In: Malandraki, O.E., Crosby, N.B. (eds.) Solar Particle Radiation Storms Forecasting and Analysis, Astrophys. Space Sci. Lib. 444, Springer, Cham. 113. DOI. ADS.

    Chapter  Google Scholar 

  • Ogawara, Y., Takano, T., Kato, T., Kosugi, T., Tsuneta, S., Watanabe, T., Kondo, I., Uchida, Y.: 1991, The SOLAR-A mission – an overview. Solar Phys. 136, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Papaioannou, A., Sandberg, I., Anastasiadis, A., Kouloumvakos, A., Georgoulis, M.K., Tziotziou, K., Tsiropoula, G., Jiggens, P., Hilgers, A.: 2016, Solar flares, coronal mass ejections and solar energetic particle event characteristics. J. Space Weather Space Clim. 6, A42. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2009, Solar release times of energetic particles in ground-level events. Astrophys. J. 693, 812. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev. 175, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sato, J., Matsumoto, Y., Yoshimura, K., Kubo, S., Kotoku, J., Masuda, S., Sawa, M., Suga, K., Yoshimori, M., Kosugi, T., Watanabe, T.: 2006, YOHKOH/WBS recalibration and a comprehensive catalogue of solar flares observed by YOHKOH SXT, HXT and WBS instruments. Solar Phys. 236, 351. DOI. ADS.

    Article  ADS  Google Scholar 

  • Share, G.H., Murphy, R.J., White, S.M., Tolbert, A.K., Dennis, B.R., Schwartz, R.A., Smart, D.F., Shea, M.A.: 2018, Characteristics of late-phase \(>100~\text{MeV}\) gamma-ray emission in solar eruptive events. Astrophys. J. 869, 182. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sladkova, A.I., Bazilevskaya, G.A., Ishkov, V.N., Nazarova, M.N., Pereyaslova, N.K., Stupishin, A.G., Ulyev, V.A., Chertok, I.M.: 1998, Catalogue of Solar Proton Events 1987 – 1996, Geophysical Center RAS, Moscow. DOI.

    Book  Google Scholar 

  • Smith, D.M., Lin, R.P., Turin, P., Curtis, D.W., Primbsch, J.H., Campbell, R.D., Abiad, R., Schroeder, P., Cork, C.P., Hull, E.L., Landis, D.A., et al.: 2002, The RHESSI spectrometer. Solar Phys. 210, 33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tan, L.C., Malandraki, O.E., Reames, D.V., Ng, C.K., Wang, L., Patsou, I., Papaioannou, A.: 2013, Comparison between path lengths traveled by solar electrons and ions in ground-level enhancement events. Astrophys. J. 768, 68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tolbert, K., Schwartz, R.: 2020, OSPEX: Object Spectral Executive, Astrophys. Source Code Lib. 2007.018. ADS.

  • Tripathi, S.C., Khan, P.A., Aslam, A.M., Gwal, A.K., Purohit, P.K., Jain, R.: 2013, Investigation on spectral behavior of solar transients and their interrelationship. Astrophys. Space Sci. 347, 227. DOI. ADS.

    Article  ADS  Google Scholar 

  • Trottet, G., Samwel, S., Klein, K.-L., Dudok de Wit, T., Miteva, R.: 2015, Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Solar Phys. 290, 819. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tylka, A.J., Dietrich, W.F.: 2009, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events. In: 31st Internat. Cosmic Ray Conf. (ICRC 2009) 4, Curran, Red Hook, 2953. mewsie.org/textbook/31st-international-cosmic-ray-conference-icrc-2009/.

    Google Scholar 

  • Tylka, A.J., Cohen, C.M.S., Dietrich, W.F., Lee, M.A., Maclennan, C.G., Mewaldt, R.A., Ng, C.K., Reames, D.V.: 2005, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uralov, A.M., Grechnev, V.V., Ivanukin, L.A.: 2019, Self-similar piston-shock and CME. Solar Phys. 294, 113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vashenyuk, E.V., Balabin, Y.V., Miroshnichenko, L.I., Perez-Peraza, J., Gallegos-Cruz, A.: 2008, Relativistic solar cosmic ray events (1956 – 2006) from GLE modeling studies. In: Caballero, R., D’Olivo, J.C., Medina-Tanco, G., Nellen, L., Sánchez, F.A., Valdés-Galicia, J.F. (eds.) Internat. Cosmic Ray Conf. 1, Universidad Nacional Autónoma de México, Mexico City, 253. ADS.

    Google Scholar 

  • Vilmer, N., MacKinnon, A.L., Hurford, G.J.: 2011, Properties of energetic ions in the solar atmosphere from \(\gamma\)-ray and neutron observations. Space Sci. Rev. 159, 167. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res., Space Phys. 109, A07105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yoshimori, M., Okudaira, K., Hirasima, Y., Igarashi, T., Akasaka, M., Takai, Y., Morimoto, K., Watanabe, T., Ohki, K., Nishimura, J., Yamagami, T., Ogawara, Y., Kondo, I.: 1991, The wide band spectrometer on the SOLAR-A. Solar Phys. 136, 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yu, X.X., Lu, H., Chen, G.T., Li, X.Q., Shi, J.K., Tan, C.M.: 2015, Detection of solar neutron events and their theoretical approach. New Astron. 39, 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, L., Zhang, M., Rassoul, H.K.: 2016, Double power laws in the event-integrated solar energetic particle spectrum. Astrophys. J. 821, 62. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to K.-L. Klein for his initial idea of the CME-facilitated escape of flare-accelerated protons, whose elaboration inspired this study, and to A.A. Kochanov and A.M. Uralov for useful discussions. We are indebted to the anonymous reviewer for valuable remarks and suggestions that helped us to elaborate the article and bring it to the final form. We thank the teams that operated RHESSI and Yohkoh. Yohkoh was a mission of ISAS in Japan, with contributions from the US and UK. We thank the authors of the catalogs of proton events and Yohkoh observations for the data used here and the team maintaining the CME Catalogs at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. We also thank the Wind/Konus team at the Ioffe Institute.

Funding

The statement of the problem, analysis of statistical relationships between the spectra of proton events and their solar sources, and discussion of the results was funded by the Russian Science Foundation under grant No. 21-72-00039 (V. Kiselev; Sections 1, 2.1, 3.1, 3.2, and 4). Processing and analysis of hard X-ray data (N. Meshalkina; Section 2.2) and selection of events (V. Grechnev; Sections 2.3, 3.3, and the Appendix) were financially supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kiselev.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Excluded Events

Appendix: Excluded Events

The catalogs of solar proton events composed by Logachev et al. (2016) and by Sladkova et al. (1998) contain information about probable solar sources of the near-Earth proton enhancements that is certain for the majority of events. Nevertheless, identification of some events is ambiguous. We checked these events using the online CDAW CME catalog (Yashiro et al., 2004: cdaw.gsfc.nasa.gov/CME_list/), the online RHESSI browser at sprg.ssl.berkeley.edu/~tohban/browser/?show=qli, the Yohkoh catalog composed by Sato et al. (2006) that is available in electronic form at dx.doi.org/10.1007/s11207-006-1831-5, and the Yohkoh resident database of SolarSoft, as well as other sources of information on solar events. The events with a questionable flare association were filtered out.

A number of events were excluded, because their parent flares occurred during the RHESSI or Yohkoh night or when they passed in the South-Atlantic Anomaly (SAA), where the observations were interrupted. An example that is not obvious is the SOL2006-12-13 GLE70 event (No. 46 in Table 3); almost the whole flare duration was observed by RHESSI, but the first HXR peak at 02:25, which was the strongest and hardest, was missed because of RHESSI night (Grechnev et al., 2013a). On the other hand, the Wind/Konus data terminated just before the main peak. An attempt to use the RHESSI spectrum for the second major peak at 02:29, which was also recorded incompletely, resulted in an outlier in the scatter plot in Figure 3. We therefore were forced to exclude this event. Another reason for the exclusion of an event was the flare location behind the limb (e.g. the SOL2001-04-18 GLE61 event, No. 14 in Table 4).

As mentioned in Section 2, we applied the condition \(2.5 < \gamma _{\mathrm{HXR}} < 4.5\). This criterion was chosen rather arbitrarily and was confirmed in the course of the analysis. We assumed that a still softer photon index indicated meager acceleration processes, which were unlikely to provide a significant \(> 50\mbox{ MeV}\) proton yield of our interest. On the other hand, a super-hard photon index does not seem realistic. In all cases when \(\gamma _{\mathrm{HXR}}\) did not fit into this range, the cause was identified. We refined the time of the HXR peak in some events. As Tables 3 and 4 show, additional reasons were revealed to exclude other events with a questionable photon index, e.g. incomplete flare observations, probable data issues, etc. The situation with \(\gamma _{\mathrm{HXR}} > 4.5\) along with a flare location very close to the limb indicated that the flare site could be partly occulted, which is also unacceptable.

Some events still were outliers on scatter plots. We examined each of them and identified the cause. In some cases, the spectra were non-monotonic and had a hump. Multiple changes of the operational mode occurred during some observations, as in the SOL2006-12-14 event (No. 47 in Table 3). For some questionable events, neither quick-look spectra nor quick-look images are present at the RHESSI browser. We noted all of these cases as data issues.

Table 3 presents the complete list of 47 RHESSI events excluded from the analysis. Table 4 presents a similar list of 17 excluded Yohkoh events.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, V.I., Meshalkina, N.S. & Grechnev, V.V. Relationships Between the Spectra of Near-Earth Proton Enhancements, Hard X-Ray Bursts, and CME Speeds. Sol Phys 297, 53 (2022). https://doi.org/10.1007/s11207-022-01986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-01986-7

Keywords

Navigation