Skip to main content
Log in

New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

  • Solar and Stellar Flares
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The heating mechanism at high densities during M-dwarf flares is poorly understood. Spectra of M-dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of \(T\approx10^{4}~\mbox{K}\) in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at \(\lambda\le3\,646\) Å, and 3) an apparent pseudo-continuum of blended high-order Balmer lines between \(\lambda=3\,646\) Å and \(\lambda\approx3\,900\) Å. These properties are not reproduced by models that employ a typical “solar-type” flare heating level of \({\le}\,10^{11}~\mbox{erg}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\) in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological three-component interpretation. We present a new 1D radiative-hydrodynamic model of an M-dwarf flare from precipitating nonthermal electrons with a high energy flux of \(10^{13}~\mbox{erg}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\). The simulation produces bright near-ultraviolet and optical continuum emission from a dense (\(n>10^{15}~\mbox{cm}^{-3}\)), hot (\(T \approx12\,000\,\mbox{--}\,13\,500~\mbox{K}\)) chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a \(T\approx10^{4}~\mbox{K}\) blackbody-like continuum component and a low Balmer jump ratio result from optically thick Balmer (\(\infty\rightarrow n=2\)) and Paschen recombination (\(\infty\rightarrow n=3\)) radiation, and thus the properties of the flux spectrum are caused by blue (\(\lambda\approx4\,300\) Å) light escaping over a larger physical depth range than by red (\(\lambda\approx6\,700\) Å) and near-ultraviolet (\(\lambda\approx3\,500\) Å) light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau–Zener transitions that result from merged, high-order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Notes

  1. A comprehensive study of NT rates was presented in the calculations of Ricchiazzi (1982) and Ricchiazzi and Canfield (1983), who found that the H i \(n=1 \rightarrow\infty\) and \(n=1 \rightarrow n=2\) rates are important, but that the \(n=2 \rightarrow\infty\) rate was negligible compared to the \(n=2 \rightarrow\infty\) thermal rates for their range of beam fluxes.

  2. The flux spectra for the F13 simulation are available upon request.

  3. The speed of sound in the CC at \(t=0.4~\mbox{s}\) is \(30~\mbox{km}\,\mbox{s}^{-1}\), whereas material is traveling at speeds of nearly \(100~\mbox{km}\,\mbox{s}^{-1}\).

  4. The differential \(\mathrm{d}I_{\lambda}/\mathrm{d}z\) in the definition of the contribution function is the same as the differential describing the variation of the specific intensity with height in the radiative-transfer equation; however, these differentials are not equivalent.

  5. \(j_{\nu}\) is often used to describe the emissivity in units of photons \(\mbox{cm}^{-3}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\) \(\mbox{Hz}^{-1}\), whereas \(\eta_{\nu}\) is used for the emissivity in units of \(\mbox{ergs}\,\mbox{cm}^{-3}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mbox{Hz}^{-1}\); here, we use \(j_{\nu}\) to describe the emissivity in units of ergs \(\mbox{cm}^{-3}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mbox{Hz}^{-1}\).

  6. See Section 3.4, there are additional opacities from photoionization of the higher levels of hydrogen, hydrogen free–free absorption, and opacity from the \(\mbox{H}^{-}\) ion that can also contribute towards the optical depth at these wavelengths.

  7. The value \(1.578\times10^{5}\) in the second exponential is 13.598 eV/\(k_{\mathrm{B}}\).

  8. Bengtson, Tannich, and Kepple (1970) provided results up to H12 using the theory of Kepple and Griem (1968) for one temperature and electron density. Bengtson (1996) provided higher order line profiles for the study of Johns-Krull et al. (1997), but these results have not been made publicly available to our knowledge.

  9. We compared the RH and RADYN predictions at \(t=2.2~\mbox{s}\) for the Balmer lines and continua that overlap, and we found satisfactory agreement.

  10. The S# refer to the time-sequential spectrum numbers over each flare analyzed in K13.

  11. We used the same continuum blue window (BW) wavelength regions and weighting as in K13.

  12. In addition to many faint metallic and helium emission lines.

  13. Assuming that the Balmer line emission does not originate at a different spatial location, for example from a larger area with a lower density, than the continuum emission.

  14. See the discussion in Hummer and Mihalas (1988) about how the theory of occupational probability differs from the Inglis–Teller relationship: the Landau–Zener transitions require fluctuations of the microfield around the critical field value.

  15. Emission model fits, e.g., with a blackbody function or RHD model spectra, give an indirect estimate of the flare area and energy flux requirements.

References

  • Abbett, W.P., Hawley, S.L.: 1999, Dynamic models of optical emission in impulsive solar flares. Astrophys. J. 521, 906. DOI .

    Article  ADS  Google Scholar 

  • Aller, L.H.: 1963, Astrophysics. The Atmospheres of the Sun and Stars, 2nd edn. Ronald Press, New York.

    Google Scholar 

  • Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: 2005, Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630, 573. DOI .

    Article  ADS  Google Scholar 

  • Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: 2006, Radiative hydrodynamic models of optical and ultraviolet emission from M dwarf flares. Astrophys. J. 644, 484. DOI .

    Article  ADS  Google Scholar 

  • Allred, J.C., Kowalski, A.F., Carlsson, M.: 2015, submitted, A unified computational model for solar and stellar flares. Astrophys. J.

  • Aschwanden, M.J., Kliem, B., Schwarz, U., Kurths, J., Dennis, B.R., Schwartz, R.A.: 1998, Wavelet analysis of solar flare hard X-rays. Astrophys. J. 505, 941. DOI .

    Article  ADS  Google Scholar 

  • Avrett, E.H., Machado, M.E., Kurucz, R.L.: 1986, Chromospheric flare models. In: Neidig, D.F. (ed.) The Lower Atmosphere of Solar Flares, National Solar Observatory, 216.

    Google Scholar 

  • Bengtson, R.D.: 1996, private communication.

  • Bengtson, R.D., Tannich, J.D., Kepple, P.: 1970, Comparison between measured and theoretical Stark-broadened profiles of \(\mbox{H}_{6}\,\mbox{--}\,\mbox{H}_{12}\) emitted from a low-density plasma. Phys. Rev. A 1, 532. DOI .

    Article  ADS  Google Scholar 

  • Brown, J.C.: 1971, The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18, 489. DOI .

    Article  ADS  Google Scholar 

  • Carlsson, M.: 1998, Radiative transfer and radiation hydrodynamics. In: Vial, J.C., Bocchialini, K., Boumier, P. (eds.) Space Solar Physics: Theoretical and Observational Issues in the Context of the SOHO Mission, Lecture Notes in Physics 507, Springer, Berlin, 163. DOI .

    Chapter  Google Scholar 

  • Carlsson, M., Rutten, R.J.: 1992, Solar hydrogen lines in the infrared. Astron. Astrophys. 259, L53.

    ADS  Google Scholar 

  • Carlsson, M., Stein, R.F.: 1992, Non-LTE radiating acoustic shocks and CA II K2V bright points. Astrophys. J. Lett. 397, L59. DOI .

    Article  ADS  Google Scholar 

  • Carlsson, M., Stein, R.F.: 1994, Radiation shock dynamics in the solar chromosphere – Results of numerical simulations. In: Carlsson, M. (ed.) Chromospheric Dynamics, University of Oslo, Oslo, 47.

    Google Scholar 

  • Carlsson, M., Stein, R.F.: 1995, Does a nonmagnetic solar chromosphere exist? Astrophys. J. Lett. 440, L29. DOI .

    Article  ADS  Google Scholar 

  • Carlsson, M., Stein, R.F.: 1997, Formation of solar calcium H and K bright grains. Astrophys. J. 481, 500. DOI .

    Article  ADS  Google Scholar 

  • Carlsson, M., Stein, R.F.: 2002, Dynamic hydrogen ionization. Astrophys. J. 572, 626. DOI .

    Article  ADS  Google Scholar 

  • Christian, D.J., Mathioudakis, M., Jevremović, D., Dupuis, J., Vennes, S., Kawka, A.: 2003, The extreme-ultraviolet continuum of a strong stellar flare. Astrophys. J. Lett. 593, L105. DOI .

    Article  ADS  Google Scholar 

  • Cram, L.E., Woods, D.T.: 1982, Models for stellar flares. Astrophys. J. 257, 269. DOI .

    Article  ADS  Google Scholar 

  • Dalgarno, A., Griffing, G.W.: 1958, Energy per ion pair for electron and proton beams in atomic hydrogen. Proc. Roy. Soc. London Ser. A 248, 415. DOI .

    Article  ADS  Google Scholar 

  • Dappen, W., Anderson, L., Mihalas, D.: 1987, Statistical mechanics of partially ionized stellar plasma – The Planck–Larkin partition function, polarization shifts, and simulations of optical spectra. Astrophys. J. 319, 195. DOI .

    Article  ADS  Google Scholar 

  • Dennis, B.R., Zarro, D.M.: 1993, The Neupert effect – What can it tell us about the impulsive and gradual phases of solar flares? Solar Phys. 146, 177. DOI .

    Article  ADS  Google Scholar 

  • Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI – An atomic database for emission lines. Astron. Astrophys. Suppl. 125, 149. DOI .

    Article  ADS  Google Scholar 

  • Donati-Falchi, A., Falciani, R., Smaldone, L.A.: 1985, Analysis of the optical spectra of solar flares. IV. The ‘blue’ continuum of white light flares. Astron. Astrophys. 152, 165.

    ADS  Google Scholar 

  • Donati-Falchi, A., Smaldone, L.A., Falciani, R.: 1984, Analysis of the optical spectra of solar flares. II. The energetics of the June 4, 1980 white light flare. Astron. Astrophys. 131, 256.

    ADS  Google Scholar 

  • Dorfi, E.A., Drury, L.O.: 1987, Simple adaptive grids for 1-D initial value problems. J. Comput. Phys. 69, 175. DOI .

    Article  ADS  MATH  Google Scholar 

  • Doyle, J.G., Butler, C.J., Bryne, P.B., van den Oord, G.H.J.: 1988, Rotational modulation and flares on RS CVn and BY DRA systems. Astron. Astrophys. 193, 229.

    ADS  Google Scholar 

  • Drake, S.A., Ulrich, R.K.: 1980, The emission-line spectrum from a slab of hydrogen at moderate to high densities. Astrophys. J. Suppl. Ser. 42, 351. DOI .

    Article  ADS  Google Scholar 

  • Eason, E.L.E., Giampapa, M.S., Radick, R.R., Worden, S.P., Hege, E.K.: 1992, Spectroscopic and photometric observations of a five-magnitude flare event on UV Ceti. Astron. J. 104, 1161. DOI .

    Article  ADS  Google Scholar 

  • Emslie, A.G.: 1978, The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level. Astrophys. J. 224, 241. DOI .

    Article  ADS  Google Scholar 

  • Fang, C., Hénoux, J.C., Gan, W.Q.: 1993, Diagnostics of non-thermal processes in chromospheric flares. 1. Hoe and Call K line profiles of an atmosphere bombarded by 10 –  500 keV electrons. Astron. Astrophys. 274, 917.

    ADS  Google Scholar 

  • Feldman, U., Hiei, E., Phillips, K.J.H., Brown, C.M., Lang, J.: 1994, Very impulsive solar flares observed with the YOHKOH spacecraft. Astrophys. J. 421, 843. DOI .

    Article  ADS  Google Scholar 

  • Fisher, G.H.: 1989, Dynamics of flare-driven chromospheric condensations. Astrophys. J. 346, 1019. DOI .

    Article  ADS  Google Scholar 

  • Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1985, Flare loop radiative hydrodynamics. Part Six. Chromospheric evaporation due to heating by nonthermal electrons. Astrophys. J. 289, 425. DOI .

    Article  ADS  Google Scholar 

  • Fletcher, L., Hudson, H.S.: 2008, Impulsive phase flare energy transport by large-scale Alfvén waves and the electron acceleration problem. Astrophys. J. 675, 1645. DOI .

    Article  ADS  Google Scholar 

  • Fuhrmeister, B., Lalitha, S., Poppenhaeger, K., Rudolf, N., Liefke, C., Reiners, A., Schmitt, J.H.M.M., Ness, J.U.: 2011, Multi-wavelength observations of Proxima Centauri. Astron. Astrophys. 534, A133. DOI .

    Article  ADS  Google Scholar 

  • Fuhrmeister, B., Liefke, C., Schmitt, J.H.M.M., Reiners, A.: 2008, Multiwavelength observations of a giant flare on CN Leonis. I. The chromosphere as seen in the optical spectra. Astron. Astrophys. 487, 293. DOI .

    Article  ADS  Google Scholar 

  • Gan, W.Q., Fang, C.: 1990, A hydrodynamic model of the gradual phase of the solar flare loop. Astrophys. J. 358, 328. DOI .

    Article  ADS  Google Scholar 

  • Gan, W.Q., Rieger, E., Zhang, H.Q., Fang, C.: 1992, The role of chromospheric condensations in the continuum emission of white-light flares. Astrophys. J. 397, 694. DOI .

    Article  ADS  Google Scholar 

  • García-Alvarez, D., Jevremović, D., Doyle, J.G., Butler, C.J.: 2002, Observations and modelling of a large optical flare on AT Microscopii. Astron. Astrophys. 383, 548. DOI .

    Article  ADS  Google Scholar 

  • Gritsyk, P.A., Somov, B.V.: 2014, Reverse-current effect in present-day models of solar flares: Theory and high-accuracy observations. Astron. Lett. 40, 499. DOI .

    Article  ADS  Google Scholar 

  • Guedel, M., Benz, A.O., Schmitt, J.H.M.M., Skinner, S.L.: 1996, The Neupert effect in active stellar coronae: Chromospheric evaporation and coronal heating in the dMe flare star binary UV ceti. Astrophys. J. 471, 1002. DOI .

    Article  ADS  Google Scholar 

  • Gustafsson, B.: 1973, A FORTRAN Program for Calculating “Continuous” Absorption Coefficients of Stellar Atmospheres, Uppsala Astr. Obs. Ann. 5.

    Google Scholar 

  • Hansteen, V.: 2012, private communication.

  • Hawley, S.L., Allred, J.C., Johns-Krull, C.M., Fisher, G.H., Abbett, W.P., Alekseev, I., Avgoloupis, S.I., Deustua, S.E., Gunn, A., Seiradakis, J.H., Sirk, M.M., Valenti, J.A.: 2003, Multiwavelength observations of flares on AD Leonis. Astrophys. J. 597, 535. DOI .

    Article  ADS  Google Scholar 

  • Hawley, S.L., Davenport, J.R.A., Kowalski, A.F., Wisniewski, J.P., Hebb, L., Deitrick, R., Hilton, E.J.: 2014, Kepler flares. I. Active and inactive M dwarfs. Astrophys. J. 797, 121. DOI .

    Article  ADS  Google Scholar 

  • Hawley, S.L., Fisher, G.H.: 1992, X-ray-heated models of stellar flare atmospheres – Theory and comparison with observations. Astrophys. J. Suppl. Ser. 78, 565. DOI .

    Article  ADS  Google Scholar 

  • Hawley, S.L., Fisher, G.H.: 1994, Solar flare model atmospheres. Astrophys. J. 426, 387. DOI .

    Article  ADS  Google Scholar 

  • Hawley, S.L., Fisher, G.H., Simon, T., Cully, S.L., Deustua, S.E., Jablonski, M., Johns-Krull, C.M., Pettersen, B.R., Smith, V., Spiesman, W.J., Valenti, J.: 1995, Simultaneous extreme-ultraviolet explorer and optical observations of AD Leonis: Evidence for large coronal loops and the Neupert effect in stellar flares. Astrophys. J. 453, 464. DOI .

    Article  ADS  Google Scholar 

  • Hawley, S.L., Pettersen, B.R.: 1991, The great flare of 1985 April 12 on AD Leonis. Astrophys. J. 378, 725. DOI .

    Article  ADS  Google Scholar 

  • Heinzel, P., Kleint, L.: 2014, Hydrogen Balmer continuum in solar flares detected by the Interface Region Imaging Spectrograph (IRIS). Astrophys. J. Lett. 794, L23. DOI .

    Article  ADS  Google Scholar 

  • Holman, G.D.: 2012, Understanding the impact of return-current losses on the X-ray emission from solar flares. Astrophys. J. 745, 52. DOI .

    Article  ADS  Google Scholar 

  • Holman, G.D., Sui, L., Schwartz, R.A., Emslie, A.G.: 2003, Electron Bremsstrahlung hard X-ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare. Astrophys. J. Lett. 595, L97. DOI .

    Article  ADS  Google Scholar 

  • Houdebine, E.R.: 1992, Investigating the spectroscopic signatures of stellar flares. Ir. Astron. J. 20, 213.

    ADS  Google Scholar 

  • Hubeny, I., Hummer, D.G., Lanz, T.: 1994, NLTE model stellar atmospheres with line blanketing near the series limits. Astron. Astrophys. 282, 151.

    ADS  Google Scholar 

  • Hummer, D.G., Mihalas, D.: 1988, The equation of state for stellar envelopes. I – An occupation probability formalism for the truncation of internal partition functions. Astrophys. J. 331, 794. DOI .

    Article  ADS  Google Scholar 

  • Ireland, J., Tolbert, A.K., Schwartz, R.A., Holman, G.D., Dennis, B.R.: 2013, Estimating the properties of hard X-ray solar flares by constraining model parameters. Astrophys. J. 769, 89. DOI .

    Article  ADS  Google Scholar 

  • Jevremovic, D., Butler, C.J., Drake, S.A., O’Donoghue, D., van Wyk, F.: 1998, Ultraviolet and optical flares on GL 866. Astron. Astrophys. 338, 1057.

    ADS  Google Scholar 

  • Johns-Krull, C.M., Hawley, S.L., Basri, G., Valenti, J.A.: 1997, Hamilton Echelle spectroscopy of the 1993 March 6 solar flare. Astrophys. J. Suppl. Ser. 112, 221. DOI .

    Article  ADS  Google Scholar 

  • Johns-Krull, C.M., Valenti, J.A.: 1996, Detection of strong magnetic fields on M dwarfs. Astrophys. J. Lett. 459, L95. DOI .

    Article  ADS  Google Scholar 

  • Karlický, M., Brown, J.C., Conway, A.J., Penny, G.: 2000, Flare hard X-rays from neutral beams. Astron. Astrophys. 353, 729.

    ADS  Google Scholar 

  • Katsova, M.M., Boiko, A.Y., Livshits, M.A.: 1997, The gas-dynamic model of impulsive stellar flares. Astron. Astrophys. 321, 549.

    ADS  Google Scholar 

  • Kašparová, J., Varady, M., Heinzel, P., Karlický, M., Moravec, Z.: 2009, Response of optical hydrogen lines to beam heating. I. Electron beams. Astron. Astrophys. 499, 923. DOI .

    Article  ADS  Google Scholar 

  • Kepple, P., Griem, H.R.: 1968, Improved Stark profile calculations for the hydrogen lines \(\mbox{H}\upalpha\), \(\mbox{H}\upbeta\), \(\mbox{H}\upgamma\), and \(\mbox {H} \updelta\). Phys. Rev. 173, 317. DOI .

    Article  ADS  Google Scholar 

  • Kerr, G.S., Fletcher, L.: 2014, Physical properties of white-light sources in the 2011 February 15 solar flare. Astrophys. J. 783, 98. DOI .

    Article  ADS  Google Scholar 

  • Kowalski, A.F., Cauzzi, G., Fletcher, L.: 2015, Optical spectral observations of a flickering white-light kernel in a C1 solar flare. Astrophys. J. 798, 107. DOI .

    Article  ADS  Google Scholar 

  • Kowalski, A.F., Hawley, S.L., Holtzman, J.A., Wisniewski, J.P., Hilton, E.J.: 2010, A white light megaflare on the dM4.5e Star YZ CMi. Astrophys. J. Lett. 714, L98. DOI .

    Article  ADS  Google Scholar 

  • Kowalski, A.F., Hawley, S.L., Holtzman, J.A., Wisniewski, J.P., Hilton, E.J.: 2012, The multiple continuum components in the white-light flare of 16 January 2009 on the dM4.5e star YZ CMi. Solar Phys. 277, 21. DOI .

    Article  ADS  Google Scholar 

  • Kowalski, A.F., Hawley, S.L., Wisniewski, J.P., Osten, R.A., Hilton, E.J., Holtzman, J.A., Schmidt, S.J., Davenport, J.R.A.: 2013, Time-resolved properties and global trends in dMe flares from simultaneous photometry and spectra. Astrophys. J. Suppl. Ser. 207, 15. DOI .

    Article  ADS  Google Scholar 

  • Kretzschmar, M.: 2011, The Sun as a star: Observations of white-light flares. Astron. Astrophys. 530, A84. DOI .

    Article  ADS  Google Scholar 

  • Krucker, S., Hudson, H.S., Jeffrey, N.L.S., Battaglia, M., Kontar, E.P., Benz, A.O., Csillaghy, A., Lin, R.P.: 2011, High-resolution imaging of solar flare ribbons and its implication on the thick-target beam model. Astrophys. J. 739, 96. DOI .

    Article  ADS  Google Scholar 

  • Kunkel, W.E.: 1970, On the spectra of stellar flares. Astrophys. J. 161, 503. DOI .

    Article  ADS  Google Scholar 

  • Leenaarts, J., Pereira, T.M.D., Carlsson, M., Uitenbroek, H., De Pontieu, B.: 2013, The formation of IRIS diagnostics. II. The formation of the Mg II h & k lines in the solar atmosphere. Astrophys. J. 772, 90. DOI .

    Article  ADS  Google Scholar 

  • Lemke, M.: 1997, Extended VCS Stark broadening tables for hydrogen – Lyman to Brackett series. Astron. Astrophys. Suppl. 122, 285. DOI .

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI .

    Article  ADS  Google Scholar 

  • Livshits, M.A., Badalian, O.G., Kosovichev, A.G., Katsova, M.M.: 1981, The optical continuum of solar and stellar flares. Solar Phys. 73, 269. DOI .

    Article  ADS  Google Scholar 

  • Longcope, D.W., Guidoni, S.E.: 2011, A model for the origin of high density in looptop X-ray sources. Astrophys. J. 740, 73. DOI .

    Article  ADS  Google Scholar 

  • Magain, P.: 1986, Contribution functions and the depths of formation of spectral lines. Astron. Astrophys. 163, 135.

    ADS  Google Scholar 

  • Mathioudakis, M., Bloomfield, D.S., Jess, D.B., Dhillon, V.S., Marsh, T.R.: 2006, The periodic variations of a white-light flare observed with ULTRACAM. Astron. Astrophys. 456, 323. DOI .

    Article  ADS  Google Scholar 

  • Mihalas, D.: 1978, Stellar Atmospheres, 2nd edn. Freeman, New York.

    Google Scholar 

  • Milligan, R.O., Kerr, G.S., Dennis, B.R., Hudson, H.S., Fletcher, L., Allred, J.C., Chamberlin, P.C., Ireland, J., Mathioudakis, M., Keenan, F.P.: 2014, The radiated energy budget of chromospheric plasma in a major solar flare deduced from multi-wavelength observations. Astrophys. J. 793, 70. DOI .

    Article  ADS  Google Scholar 

  • Mott, N.F., Massey, H.S.W.: 1965, Theory of Atomic Collisions, 3rd edn. Oxford University Press, Oxford.

    Google Scholar 

  • Mullan, D.J., Mathioudakis, M., Bloomfield, D.S., Christian, D.J.: 2006, A comparative study of flaring loops in active stars. Astrophys. J. Suppl. Ser. 164, 173. DOI .

    Article  ADS  Google Scholar 

  • Nayfonov, A., Däppen, W., Hummer, D.G., Mihalas, D.: 1999, The MHD equation of state with post-Holtsmark microfield distributions. Astrophys. J. 526, 451. DOI .

    Article  ADS  Google Scholar 

  • Neidig, D.F.: 1983, Spectral analysis of the optical continuum in the 24 April 1981 flare. Solar Phys. 85, 285. DOI .

    Article  ADS  Google Scholar 

  • Neidig, D.F., Grosser, H., Hrovat, M.: 1994, Optical output of the 24 April 1984 white-light flare. Solar Phys. 155, 199. DOI .

    Article  ADS  Google Scholar 

  • Osten, R.A., Drake, S., Tueller, J., Cummings, J., Perri, M., Moretti, A., Covino, S.: 2007, Nonthermal hard X-ray emission and iron \(\mbox{K}\upalpha\) emission from a superflare on II Pegasi. Astrophys. J. 654, 1052. DOI .

    Article  ADS  Google Scholar 

  • Osten, R.A., Godet, O., Drake, S., Tueller, J., Cummings, J., Krimm, H., Pye, J., Pal’shin, V., Golenetskii, S., Reale, F., Oates, S.R., Page, M.J., Melandri, A.: 2010, The mouse that roared: A superflare from the dMe flare star EV Lac detected by Swift and Konus-Wind. Astrophys. J. 721, 785. DOI .

    Article  ADS  Google Scholar 

  • Osten, R.A., Hawley, S.L., Allred, J., Johns-Krull, C.M., Brown, A., Harper, G.M.: 2006, From radio to X-ray: The quiescent atmosphere of the dMe flare star EV Lacertae. Astrophys. J. 647, 1349. DOI .

    Article  ADS  Google Scholar 

  • Paulson, D.B., Allred, J.C., Anderson, R.B., Hawley, S.L., Cochran, W.D., Yelda, S.: 2006, Optical spectroscopy of a flare on Barnard’s star. Publ. Astron. Soc. Pac. 118, 227. DOI .

    Article  ADS  Google Scholar 

  • Phan-Bao, N., Lim, J., Donati, J.F., Johns-Krull, C.M., Martín, E.L.: 2009, Magnetic field topology in low-mass stars: Spectropolarimetric observations of M dwarfs. Astrophys. J. 704, 1721. DOI .

    Article  ADS  Google Scholar 

  • Pillet, P., van Linden van den Heuvell, H.B., Smith, W.W., Kachru, R., Tran, N.H., Gallagher, T.F.: 1984, Microwave ionization of Na Rydberg atoms. Phys. Rev. A 30, 280. DOI .

    Article  ADS  Google Scholar 

  • Qiu, J., Liu, W., Hill, N., Kazachenko, M.: 2010, Reconnection and energetics in two-ribbon flares: A revisit of the Bastille-day flare. Astrophys. J. 725, 319. DOI .

    Article  ADS  Google Scholar 

  • Ricchiazzi, P.J.: 1982, A static model of chromospheric heating in solar flares. Ph.D. Thesis, California University, San Diego.

  • Ricchiazzi, P.J., Canfield, R.C.: 1983, A static model of chromospheric heating in solar flares. Astrophys. J. 272, 739. DOI .

    Article  ADS  Google Scholar 

  • Robinson, R.D., Carpenter, K.G., Percival, J.W., Bookbinder, J.A.: 1995, A search for microflaring activity on dMe flare stars. I. Observations of the dM8e star CN Leonis. Astrophys. J. 451, 795. DOI .

    Article  ADS  Google Scholar 

  • Rybicki, G.B., Hummer, D.G.: 1992, An accelerated lambda iteration method for multilevel radiative transfer. II. Overlapping transitions with full continuum. Astron. Astrophys. 262, 209.

    ADS  Google Scholar 

  • Scharmer, G.B.: 1981, Solutions to radiative transfer problems using approximate lambda operators. Astrophys. J. 249, 720. DOI .

    Article  ADS  Google Scholar 

  • Scharmer, G.B., Carlsson, M.: 1985, A new approach to multi-level non-LTE radiative transfer problems. J. Comput. Phys. 59, 56. DOI .

    Article  ADS  MATH  Google Scholar 

  • Schrijver, C.J., Hudson, H.S., Murphy, R.J., Share, G.H., Tarbell, T.D.: 2006, Gamma rays and the evolving, compact structures of the 2003 October 28 X17 flare. Astrophys. J. 650, 1184. DOI .

    Article  ADS  Google Scholar 

  • Seaton, M.J.: 1990, Atomic data for opacity calculations. XIII. Line profiles for transitions in hydrogenic ions. J. Phys. B, At. Mol. Opt. Phys. 23, 3255. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Smith, K., Güdel, M., Audard, M.: 2005, Flares observed with XMM-Newton and the VLA. Astron. Astrophys. 436, 241. DOI .

    Article  ADS  Google Scholar 

  • Smith, R.K., Brickhouse, N.S., Liedahl, D.A., Raymond, J.C.: 2001, Collisional plasma models with APEC/APED: Emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J. Lett. 556, L91. DOI .

    Article  ADS  Google Scholar 

  • Stehle, C., Jacquemot, S.: 1993, Line shapes in hydrogen opacities. Astron. Astrophys. 271, 348.

    ADS  Google Scholar 

  • Su, Y., Holman, G.D., Dennis, B.R.: 2011, Evidence for the full hard X-ray spectral signature of nonuniform ionization in a solar flare. Astrophys. J. 731, 106. DOI .

    Article  ADS  Google Scholar 

  • Sutton, K.: 1978, Approximate line shapes for hydrogen. J. Quant. Spectrosc. Radiat. Transf. 20, 333. DOI .

    Article  ADS  Google Scholar 

  • Švestka, Z.: 1963, Spectral analysis of the moustache-like flare of August 7, 1960. Bull. Astron. Inst. Czechoslov. 14, 234.

    ADS  Google Scholar 

  • Tremblay, P.E., Bergeron, P.: 2009, Spectroscopic analysis of DA white dwarfs: Stark broadening of hydrogen lines including nonideal effects. Astrophys. J. 696, 1755. DOI .

    Article  ADS  Google Scholar 

  • Uitenbroek, H.: 2001, Multilevel radiative transfer with partial frequency redistribution. Astrophys. J. 557, 389. DOI .

    Article  ADS  Google Scholar 

  • Varady, M., Karlický, M., Moravec, Z., Kašparová, J.: 2014, Modifications of thick-target model: Re-acceleration of electron beams by static and stochastic electric fields. Astron. Astrophys. 563, A51. DOI .

    Article  ADS  Google Scholar 

  • Vidal, C.R., Cooper, J., Smith, E.W.: 1970, Hydrogen Stark broadening calculations with the unified classical path theory. J. Quant. Spectrosc. Radiat. Transf. 10, 1011. DOI .

    Article  ADS  Google Scholar 

  • Vidal, C.R., Cooper, J., Smith, E.W.: 1971, Unified theory calculations of Stark broadened hydrogen lines including lower state interactions. J. Quant. Spectrosc. Radiat. Transf. 11, 263. DOI .

    Article  ADS  Google Scholar 

  • Vidal, C.R., Cooper, J., Smith, E.W.: 1973, Hydrogen Stark-broadening tables. Astrophys. J. Suppl. Ser. 25, 37. DOI .

    Article  ADS  Google Scholar 

  • Wang, L., Fang, C., Ding, M.: 2007, Small-scale brightenings in the UV continuum of an M9.1 solar flare. Chin. J. Astron. Astrophys. 7, 721. DOI .

    Article  ADS  Google Scholar 

  • Warren, H.P.: 2006, Multithread hydrodynamic modeling of a solar flare. Astrophys. J. 637, 522. DOI .

    Article  ADS  Google Scholar 

  • Wiese, W.L., Kelleher, D.E., Paquette, D.R.: 1972, Detailed study of the Stark broadening of Balmer lines in a high-density plasma. Phys. Rev. A 6, 1132. DOI .

    Article  ADS  Google Scholar 

  • Worden, S.P., Schneeberger, T.J., Giampapa, M.S., Deluca, E.E., Cram, L.E.: 1984, The response of chromospheric emission lines to flares on YZ Canis Minoris. Astrophys. J. 276, 270. DOI .

    Article  ADS  Google Scholar 

  • Young, P.R., Del Zanna, G., Landi, E., Dere, K.P., Mason, H.E., Landini, M.: 2003, CHIANTI – An atomic database for emission lines. VI. Proton rates and other improvements. Astrophys. J. Suppl. Ser. 144, 135. DOI .

    Article  ADS  Google Scholar 

  • Zener, C.: 1932, Non-adiabatic crossing of energy levels. Proc. Roy. Soc. London Ser. A 137, 696. DOI .

    Article  ADS  Google Scholar 

  • Zirin, H.: 1980, Three flares with blue continuum, one with a D3 preflare shell. Astrophys. J. 235, 618. DOI .

    Article  ADS  Google Scholar 

  • Zirin, H., Neidig, D.F.: 1981, Continuum emission in the 1980 July 1 solar flare. Astrophys. J. Lett. 248, L45. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Adam F. Kowalski thanks the Science Organizing Committee of the Solar and Stellar Flares meeting in Prague, Czech Republic for the opportunity to present this work. We thank an anonymous referee for clarifications and comments that helped improve this work. Adam F. Kowalski thanks Petr Heinzel and Hans Ludwig for bringing hot star modeling articles of Stark broadening to his attention. We thank Adrian Daw, Eric Agol, Ellen Zweibel, and Jeremiah Murphy for helpful discussions and William Abbett for several IDL routines used in the analysis. AFK also acknowledges helpful discussions at the International Space Science Institute with Lyndsay Fletcher’s Solar and Stellar Flares team and with Sven Wedemeyer-Bohm’s Magnetic Activity of M-type Dwarf Stars and the Influence on Habitable Extra-solar Planets team. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, and by the University of Maryland Goddard Planetary Heliophysics Institute (GPHI) Task 132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam F. Kowalski.

Additional information

Solar and Stellar Flares: Observations, Simulations, and Synergies

Guest Editors: Lyndsay Fletcher and Petr Heinzel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalski, A.F., Hawley, S.L., Carlsson, M. et al. New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation. Sol Phys 290, 3487–3523 (2015). https://doi.org/10.1007/s11207-015-0708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0708-x

Keywords

Navigation