Skip to main content
Log in

Large-Scale Vortex Motion and Multiple Plasmoid Ejection Due to Twisting Prominence Threads and Associated Reconnection

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyze the characteristics of a quiescent polar prominence using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Initially, small-scale barb-like structures are evident on the solar disk, which firstly grow vertically and thereafter move towards the south-west limb. Later, a spine connects these barbs and we observe apparent rotating motions in the upper part of the prominence. These apparent rotating motions might play an important role for the evolution and growth of the filament by transferring cool plasma and magnetic twist. Large-scale vortex motion is evident in the upper part of the prominence and consists of a swirl-like structure within it. The slow motion of the footpoint twists the legs of the prominence due to magnetic shear, causing two different kinds of magnetic reconnection. The internal reconnection is initiated by a resistive-tearing-mode instability, which leads to the formation of multiple plasmoids in the elongated current sheet. The estimated growth rate was found to be 0.02 – 0.05. The magnetic reconnection heats the current sheet for a small duration. However, most of the energy release due to magnetic reconnection is absorbed by the surrounding cool and dense plasma and used to accelerate the plasmoid ejection. The multiple plasmoid ejections destroy the current sheet. Thereafter, the magnetic arcades collapse near the X-point. Oppositely directed magnetic arcades may reconnect with the southern segment of the prominence and an elongated thin current sheet is formed. This external reconnection drives the prominence eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Antiochos, S.K., Dahlburg, R.B., Klimchuk, J.A.: 1994, Astrophys. J. 420, L41. DOI.

    Article  ADS  Google Scholar 

  • Aulanier, G., Schmieder, B.: 2002, Astron. Astrophys. 386, 1106. DOI.

    Article  ADS  Google Scholar 

  • Aulanier, G., Démoulin, P., van Driel-Gesztelyi, L., Mein, P., Deforest, C.: 1998, Astron. Astrophys. 335, 309.

    ADS  Google Scholar 

  • Berger, T.: 2012, The prominence/coronal cavity system: a unified view of magnetic structures in the solar corona. In: Rimmele, T.R., Tritschler, A., Woger, F., Collados Vera, M., Socas Navarro, H., Schlichenmaier, R., Carlsson, M., Berger, T., Cadavid, A., Gilbert, H., Goode, P.R., Knolker, M. (eds.) Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona CS–463, Astron. Soc. Pacific, San Francisco, 147.

    Google Scholar 

  • Chen, Q.R., Ding, M.D.: 2006, Astrophys. J. 641, 1217. DOI.

    Article  ADS  Google Scholar 

  • Chen, P.-F., Fang, C., Ding, M.-D.D.: 2001, Chin. J. Astron. Astrophys. 1, 176. DOI.

    Article  ADS  Google Scholar 

  • Cheng, X., Li, Y., Wan, L.F., Ding, M.D., Chen, P.F., Zhang, J., Liu, J.J.: 2018, Astrophys. J. 866, 64. DOI.

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., Boerner, P., Schrijver, C.J., Testa, P., Chen, F., Peter, H., Malanushenko, A.: 2015, Astrophys. J. 807, 143. DOI.

    Article  ADS  Google Scholar 

  • Dai, J., Yang, J., Li, L., Zhang, J.: 2018, Astrophys. J. 869, 118. DOI.

    Article  ADS  Google Scholar 

  • DeVore, C.R., Antiochos, S.K.: 2000, Astrophys. J. 539, 954. DOI.

    Article  ADS  Google Scholar 

  • Dudík, J., Aulanier, G., Schmieder, B., Bommier, V., Roudier, T.: 2008, Solar Phys. 248, 29. DOI.

    Article  ADS  Google Scholar 

  • Dudík, J., Aulanier, G., Schmieder, B., Zapiór, M., Heinzel, P.: 2012, Astrophys. J. 761, 9. DOI.

    Article  ADS  Google Scholar 

  • Fan, Y.: 2018, Astrophys. J. 862, 54. DOI.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Fan, Y.: 2006, J. Geophys. Res. A 111, A12103. DOI.

    Article  ADS  Google Scholar 

  • Kuperus, M., Raadu, M.A.: 1974, Astron. Astrophys. 31, 189.

    ADS  Google Scholar 

  • Kusano, K., Yokoyama, T., Maeshiro, T., Sakurai, T.: 2003, Adv. Space Res. 32, 1931. DOI.

    Article  ADS  Google Scholar 

  • Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2004, Astrophys. J. 610, 537. DOI.

    Article  ADS  Google Scholar 

  • Labrosse, N., Heinzel, P., Vial, J.-C., Kucera, T., Parenti, S., Gunár, S., Schmieder, B., Kilper, G.: 2010, Space Sci. Rev. 151, 243. DOI.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, Solar Phys. 275, 17. DOI.

    Article  ADS  Google Scholar 

  • Levens, P.J., Schmieder, B., Labrosse, N., López Ariste, A.: 2016a, Astrophys. J. 818, 31. DOI.

    Article  ADS  Google Scholar 

  • Levens, P.J., Schmieder, B., López Ariste, A., Labrosse, N., Dalmasse, K., Gelly, B.: 2016b, Astrophys. J. 826, 164. DOI.

    Article  ADS  Google Scholar 

  • Li, L., Zhang, J.: 2013, Solar Phys. 282, 147. DOI.

    Article  ADS  Google Scholar 

  • Li, L., Zhang, J., Peter, H., Priest, E., Chen, H., Guo, L., Chen, F., Mackay, D.: 2016, Nat. Phys. 12, 847. DOI.

    Article  Google Scholar 

  • Li, X., Morgan, H., Leonard, D., Jeska, L.: 2012, Astrophys. J. 752, L22. DOI.

    Article  ADS  Google Scholar 

  • Lin, Y., Wiik, J.E., Engvold, O., Rouppe van der Voort, L., Frank, Z.A.: 2005, Solar Phys. 227, 283. DOI.

    Article  ADS  Google Scholar 

  • Litvinenko, Y.E.: 1999, Astrophys. J. 515, 435. DOI.

    Article  ADS  Google Scholar 

  • Litvinenko, Y.E., Chae, J., Park, S.-Y.: 2007, Astrophys. J. 662, 1302. DOI.

    Article  ADS  Google Scholar 

  • Liu, W., Berger, T.E., Low, B.C.: 2012, Astrophys. J. 745, L21. DOI.

    Article  ADS  Google Scholar 

  • Liu, W., Chen, Q., Petrosian, V.: 2013, Astrophys. J. 767, 168. DOI.

    Article  ADS  Google Scholar 

  • Low, B.C., Hundhausen, J.R.: 1995, Astrophys. J. 443, 818. DOI.

    Article  ADS  Google Scholar 

  • Luna, M., Karpen, J.T., DeVore, C.R.: 2012, Astrophys. J. 746, 30. DOI.

    Article  ADS  Google Scholar 

  • Luna, M., Moreno-Insertis, F., Priest, E.: 2015, Astrophys. J. Lett. 808, L23. DOI.

    Article  ADS  Google Scholar 

  • Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Space Sci. Rev. 151, 333. DOI.

    Article  ADS  Google Scholar 

  • Martens, P.C., Zwaan, C.: 2001, Astrophys. J. 558, 872. DOI.

    Article  ADS  Google Scholar 

  • Morgan, H., Druckmüller, M.: 2014, Solar Phys. 289, 2945. DOI.

    Article  ADS  Google Scholar 

  • Murphy, N.A., Miralles, M.P., Pope, C.L., Raymond, J.C., Winter, H.D., Reeves, K.K., Seaton, D.B., van Ballegooijen, A.A., Lin, J.: 2012, Astrophys. J. 751, 56. DOI.

    Article  ADS  Google Scholar 

  • Nemati, M.J., Wang, Z.X., Wei, L., Selim, B.I.: 2015, Phys. Plasmas 22, 012106. DOI.

    Article  ADS  Google Scholar 

  • Ohyama, M., Shibata, K.: 1997, Publ. Astron. Soc. Japan 49, 249. DOI.

    Article  ADS  Google Scholar 

  • Ohyama, M., Shibata, K.: 1998, Astrophys. J. 499, 934. DOI.

    Article  ADS  Google Scholar 

  • Ohyama, M., Shibata, K.: 2008, Publ. Astron. Soc. Japan 60, 85. DOI.

    Article  ADS  Google Scholar 

  • Ouyang, Y., Zhou, Y.H., Chen, P.F., Fang, C.: 2017, Astrophys. J. 835, 94. DOI.

    Article  ADS  Google Scholar 

  • Panasenco, O., Martin, S.F., Velli, M.: 2014, Solar Phys. 289, 603. DOI.

    Article  ADS  Google Scholar 

  • Panesar, N.K., Innes, D.E., Schmit, D.J., Tiwari, S.K.: 2014, Solar Phys. 289, 2971. DOI.

    Article  ADS  Google Scholar 

  • Pant, V., Datta, A., Banerjee, D., Chandrashekhar, K., Ray, S.: 2018, Astrophys. J. 860, 80. DOI.

    Article  ADS  Google Scholar 

  • Parenti, S.: 2014, Liv. Rev. Solar Phys. 11, 1. DOI.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, Solar Phys. 275, 3. DOI.

    Article  ADS  Google Scholar 

  • Płocieniak, S., Rompolt, B.: 1973, Solar Phys. 29, 399. DOI.

    Article  ADS  Google Scholar 

  • Priest, E.R.: 1989, Dynamics and Structure of Quiescent Solar Prominences, Astrophys. Space Sci. Lib. 150, Kluwer, Dordrecht. DOI.

    Book  Google Scholar 

  • Priest, E.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press, Cambridge. DOI.

    Book  Google Scholar 

  • Priest, E., Forbes, T.: 2000, Magnetic reconnection: MHD theory and applications, Cambridge University Press, Cambridge. DOI.

    Book  MATH  Google Scholar 

  • Reeves, K.K., Linker, J.A., Mikić, Z., Forbes, T.G.: 2010, Astrophys. J. 721, 1547. DOI.

    Article  ADS  Google Scholar 

  • Rust, D.M., Kumar, A.: 1994, Solar Phys. 155, 69. DOI.

    Article  ADS  Google Scholar 

  • Schmit, D.J., Gibson, S.: 2013, Astrophys. J. 770, 35. DOI.

    Article  ADS  Google Scholar 

  • Schmit, D.J., Gibson, S., Luna, M., Karpen, J., Innes, D.: 2013, Astrophys. J. 779, 156. DOI.

    Article  ADS  Google Scholar 

  • Schmieder, B., Chandra, R., Berlicki, A., Mein, P.: 2010, Astron. Astrophys. 514, A68. DOI.

    Article  ADS  Google Scholar 

  • Shibata, K.: 1996, Adv. Space Res. 17, 9.

    Article  ADS  Google Scholar 

  • Shibata, K.: 1997, In: Wilson, A. (ed.) Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity CP-404, ESA, Noordwijk, 103.

    Google Scholar 

  • Shibata, K., Takasao, S.: 2016, Magnetic Reconnection: Concepts and Applications. Astrophys. Space Sci. Libr. 427, 373. DOI.

    Article  ADS  Google Scholar 

  • Shibata, K., Tanuma, S.: 2001, Earth Planets Space 53, 473. DOI.

    Article  ADS  Google Scholar 

  • Shibata, K., Masuda, S., Shimojo, M., Hara, H., Yokoyama, T., Tsuneta, S., Kosugi, T., Ogawara, Y.: 1995, Astrophys. J. Lett. 451, L83. DOI.

    Article  ADS  Google Scholar 

  • Srivastava, A.K., Mishra, S.K., Jelínek, P., Samanta, T., Tian, H., Pant, V., Kayshap, P., Banerjee, D., Doyle, J.G., Dwivedi, B.N.: 2019, Astrophys. J. 887, 137. DOI.

    Article  ADS  Google Scholar 

  • Sterling, A.C., Hudson, H.S.: 1997, Astrophys. J. 491, L55. DOI.

    Article  ADS  Google Scholar 

  • Su, Y., Wang, T., Veronig, A., Temmer, M., Gan, W.: 2012, Astrophys. J. Lett. 756, L41. DOI.

    Article  ADS  Google Scholar 

  • Su, Y., Gömöry, P., Veronig, A., Temmer, M., Wang, T., Vanninathan, K., Gan, W., Li, Y.: 2014, Astrophys. J. Lett. 785, L2. DOI.

    Article  ADS  Google Scholar 

  • Tandberg-Hanssen, E.: 1998, The history of solar prominence research. In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) New Perspectives on Solar Prominences, Proc. IAU Colloq. 167, CS-159, Astron. Soc. Pacific, San Francisco, 150, 11.

    Google Scholar 

  • Tsuneta, S.: 1997, Astrophys. J. 483, 507. DOI.

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A.: 2004, Astrophys. J. 612, 519. DOI.

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Cranmer, S.R.: 2010, Astrophys. J. 711, 164. DOI.

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Martens, P.C.H.: 1989, Astrophys. J. 343, 971. DOI.

    Article  ADS  Google Scholar 

  • Wang, B., Chen, Y., Fu, J., Li, B., Li, X., Liu, W.: 2016, Astrophys. J. 827, L33. DOI.

    Article  ADS  Google Scholar 

  • Wedemeyer, S., Scullion, E., Steiner, O., de la Cruz Rodriguez, J., Rouppe van der Voort, L.H.M.: 2013, In: Cally, P., Erdélyi, R., Norton, A. (eds.) Eclipse on the Coral Sea: Cycle 24 Ascending J. Physics Conf. Ser., CS–440, 012005. DOI.

    Chapter  Google Scholar 

  • Wedemeyer-Böhm, S., Scullion, E., Steiner, O., Rouppe van der Voort, L., de La Cruz Rodriguez, J., Fedun, V., Erdélyi, R.: 2012, Nature 486, 505. DOI.

    Article  ADS  Google Scholar 

  • Xia, C., Keppens, R., Antolin, P., Porth, O.: 2014, Astrophys. J. 792, L38. DOI.

    Article  ADS  Google Scholar 

  • Xue, Z., Yan, X., Cheng, X., Yang, L., Su, Y., Kliem, B., Zhang, J., Liu, Z., Bi, Y., Xiang, Y., Yang, K., Zhao, L.: 2016, Nat. Comm. 7, 11837. DOI.

    Article  ADS  Google Scholar 

  • Xue, Z., Yan, X., Yang, L., Wang, J., Feng, S., Li, Q., Ji, K., Zhao, L.: 2018, Astrophys. J. 858, L4. DOI.

    Article  ADS  Google Scholar 

  • Yang, Z., Tian, H., Peter, H., Su, Y., Samanta, T., Zhang, J., Chen, Y.: 2018, Astrophys. J. 852, 79. DOI.

    Article  ADS  Google Scholar 

  • Zhu, C., Liu, R., Alexander, D., McAteer, R.T.J.: 2016, Astrophys. J. Lett. 821, L29. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewer for valuable comments that have helped us to substantially improve the manuscript. A.K. Srivastava and S.K. Mishra acknowledge the DST-SERB (YSS/2015/000621) project. A.K. Srivastava acknowledges the UKIERI Research Grant for the support of his research. P.F. Chen was supported by the Chinese grants NSFC 11533005, 11961131002 and Jiangsu 333 Project (No. BRA2017359). We acknowledge the use of Cheung et al. (2015) for calculating the differential emission measure (DEM). Data courtesy of NASA/SDO and the AIA science team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudheer K. Mishra.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below are the links to the electronic supplementary material.

11207_2020_1733_MOESM1_ESM.mp4

The animation (movie1.mp4) shows the evolution of a helical flux rope, apparent rotating motion of plasma, and swirling motion on the top of the prominence. It also includes the basic structure and internal dynamics; i.e. barbs, spine, swirl motion, horns, apparent helical motion etc., in a polar prominence. It runs from 9 June 2018 at 08:30 UT to 14 June 2018 07:30 UT. (MP4 5.3 MB)

11207_2020_1733_MOESM2_ESM.mp4

The animation (movie2.mp4) shows the full evolution of large-scale vortex motion and swirl-like structure within it in a polar prominence using SDO/AIA 304 Angstrom data. This animation run from 09:20 UT to 11:50 UT 14 June 2018. (MP4 15.8 MB)

11207_2020_1733_MOESM3_ESM.mp4

The animation (movie3.mp4) shows that oppositely directed prominence legs reconnect over a polarity inversion line (PIL) and initiate the plasmoid-enhanced reconnection. We assume that the PIL is lying between the prominence legs. The animation runs from 11:00 UT to 13:00 UT on 14 June 2018. (MP4 2.9 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.K., Srivastava, A.K. & Chen, P.F. Large-Scale Vortex Motion and Multiple Plasmoid Ejection Due to Twisting Prominence Threads and Associated Reconnection. Sol Phys 295, 167 (2020). https://doi.org/10.1007/s11207-020-01733-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01733-w

Keywords

Navigation