Skip to main content
Log in

Physics of Solar Prominences: I—Spectral Diagnostics and Non-LTE Modelling

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (i.e. when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • U. Anzer, P. Heinzel, Prominence parameters derived from magnetic-field measurements and NLTE diagnostics. Sol. Phys. 179, 75–87 (1998)

    Article  ADS  Google Scholar 

  • U. Anzer, P. Heinzel, The energy balance in solar prominences. Astron. Astrophys. 349, 974–984 (1999)

    ADS  Google Scholar 

  • U. Anzer, P. Heinzel, Energy considerations for solar prominences with mass inflow. Astron. Astrophys. 358, 75–78 (2000)

    ADS  Google Scholar 

  • U. Anzer, P. Heinzel, On the nature of dark extreme ultraviolet structures seen by SOHO/EIT and TRACE. Astrophys. J. 622, 714–721 (2005). doi:10.1086/427817

    Article  ADS  Google Scholar 

  • U. Anzer, P. Heinzel, Prominence modelling: from observed emission measures to temperature profiles. Astron. Astrophys. 480, 537–542 (2008). doi:10.1051/0004-6361:20078832

    Article  ADS  Google Scholar 

  • U. Anzer, P. Heinzel, F. Fárnik, Prominences on the limb: Diagnostics with UV EUV lines and the soft X-ray continuum. Sol. Phys. 242, 43–52 (2007). doi:10.1007/s11207-007-0344-1

    Article  ADS  Google Scholar 

  • L.H. Auer, D. Mihalas, Non-LTE model atmospheres. II. Effects of balmer α. Astrophys. J. 156, 681 (1969). doi:10.1086/149998

    Article  ADS  Google Scholar 

  • L.H. Auer, F. Paletou, Two-dimensional radiative transfer with partial frequency redistribution I. General method. Astron. Astrophys. 285, 675–686 (1994)

    ADS  Google Scholar 

  • L. Auer, P.F. Bendicho, J. Trujillo Bueno, Multidimensional radiative transfer with multilevel atoms. 1: ALI method with preconditioning of the rate equations. Astron. Astrophys. 292, 599–615 (1994)

    ADS  Google Scholar 

  • E.H. Avrett, New models of the solar chromosphere and transition region from SUMER observations, in The Physics of Chromospheric Plasmas, ed. by P. Heinzel, I. Dorotovič, R.J. Rutten. Astronomical Society of the Pacific Conference Series, vol. 368 (2007), p. 81

  • E.H. Avrett, R. Loeser, Iterative Solution of Multilevel Transfer Problems, ed. by W. Kalkofen (1987), p. 135

  • E.H. Avrett, R. Loeser, The PANDORA atmosphere program (Invited Review), in Cool Stars, Stellar Systems, and the Sun, ed. by M.S. Giampapa, J.A. Bookbinder. Astronomical Society of the Pacific Conference Series, vol. 26 (1992), p. 489

  • J.D.F. Bartoe, G.E. Brueckner, New stigmatic, coma-free, concave-grating spectrograph. J. Opt. Soc. Am. 65, 13–21 (1975)

    Article  ADS  Google Scholar 

  • T.S. Bastian, M.W. Ewell Jr., H. Zirin, A study of solar prominences near lambda = 1 millimeter. Astrophys. J. 418, 510 (1993). doi:10.1086/173413

    Article  ADS  Google Scholar 

  • F. Baudin, E. Ibarra, E.H. Avrett, J.C. Vial, K. Bocchialini, A. Costa, P. Lemaire, M. Rovira, A contribution to the understanding of chromospheric oscillations. Sol. Phys. 241, 39–51 (2007). doi:10.1007/s11207-007-0006-3

    Article  ADS  Google Scholar 

  • J.M. Beckers, A study of the fine structures in the solar chromosphere, PhD thesis, University of Utrecht (AFCRL-Environmental Research Paper, No. 49), 1964

  • C. Bendlin, E. Wiehr, G. Stellmacher, Spectroscopic analysis of prominence emissions. Astron. Astrophys. 197, 274–280 (1988)

    ADS  Google Scholar 

  • T.E. Berger, R.A. Shine, G.L. Slater, T.D. Tarbell, A.M. Title, T.J. Okamoto, K. Ichimoto, Y. Katsukawa, Y. Suematsu, S. Tsuneta, B.W. Lites, T. Shimizu, Hinode SOT observations of solar quiescent prominence dynamics. Astrophys. J. 676, 89–92 (2008). doi:10.1086/587171

    Article  ADS  Google Scholar 

  • V. Bommier, S. Sahal-Brechot, J.L. Leroy, The linear polarization of hydrogen H-beta radiation and the joint diagnostic of magnetic field vector and electron density in quiescent prominences. I—The magnetic field. Astron. Astrophys. 156, 79–89 (1986a)

    ADS  Google Scholar 

  • V. Bommier, J.L. Leroy, S. Sahal-Brechot, The linear polarization of hydrogen H-beta radiation and the joint diagnostic of magnetic field vector and electron density in quiescent prominences. II—The electron density. Astron. Astrophys. 156, 90–94 (1986b)

    ADS  Google Scholar 

  • V. Bommier, E. Landi Degl’Innocenti, J.L. Leroy, S. Sahal-Brechot, Complete determination of the magnetic field vector and of the electron density in 14 prominences from linear polarization measurements in the HeI D3 and H-alpha lines. Sol. Phys. 154, 231–260 (1994). doi:10.1007/BF00681098

    Article  ADS  Google Scholar 

  • R.M. Bonnet, P. Lemaire, J.C. Vial, G. Artzner, P. Gouttebroze, A. Jouchoux, A. Vidal-Madjar, J.W. Leibacher, A. Skumanich, The LPSP instrument on OSO 8. II—In-flight performance and preliminary results. Astrophys. J. 221, 1032–1053 (1978). doi:10.1086/156109

    Article  ADS  Google Scholar 

  • R.M. Bonnet, M. Decaudin, E.C. Bruner Jr., L.W. Acton, W.A. Brown, High-resolution Lyman-alpha filtergrams of the sun. Astrophys. J. 237, 47–50 (1980). doi:10.1086/183232

    Article  ADS  Google Scholar 

  • J. Chae, The formation of a prominence in NOAA active region 8668. II. Trace observations of jets and eruptions associated with canceling magnetic features. Astrophys. J. 584, 1084–1094 (2003). doi:10.1086/345739

    Article  ADS  Google Scholar 

  • J. Chae, U. Schühle, P. Lemaire, SUMER measurements of nonthermal motions: Constraints on coronal heating mechanisms. Astrophys. J. 505, 957–973 (1998). doi:10.1086/306179

    Article  ADS  Google Scholar 

  • J. Chae, C. Denker, T.J. Spirock, H. Wang, P.R. Goode, High-resolution Hα observations of proper motion in NOAA 8668: Evidence for filament mass injection by chromospheric reconnection. Sol. Phys. 195, 333–346 (2000)

    Article  ADS  Google Scholar 

  • J. Chae, Y.D. Park, H.M. Park, Imaging spectroscopy of a solar filament using a tunable Hα filter. Sol. Phys. 234, 115–134 (2006). doi:10.1007/s11207-006-0047-z

    Article  ADS  Google Scholar 

  • J. Chae, H.M. Park, Y.D. Park, Hα spectral properties of velocity threads constituting a quiescent solar filament. J. Korean Astron. Soc. 40, 67–82 (2007)

    ADS  Google Scholar 

  • J. Chae, K. Ahn, E.K. Lim, G.S. Choe, T. Sakurai, Persistent horizontal flows and magnetic support of vertical threads in a quiescent prominence. Astrophys. J. 689, 73–76 (2008). doi:10.1086/595785

    Article  ADS  Google Scholar 

  • E.S. Chang, D. Deming, Accurate determination of electron densities in active and quiescent prominences: the mid-infrared advantage. Sol. Phys. 179, 89–124 (1998)

    Article  ADS  Google Scholar 

  • C. Chiuderi, F. Chiuderi-Drago, Energy balance in the prominence-corona transition region. Sol. Phys. 132, 81–94 (1991). doi:10.1007/BF00159131

    Article  ADS  Google Scholar 

  • F. Chiuderi-Drago, The He I abundance in solar filaments. Astron. Astrophys. 443, 1055–1059 (2005). doi:10.1051/0004-6361:20053341

    Article  ADS  Google Scholar 

  • F. Chiuderi-Drago, C.E. Alissandrakis, T. Bastian, K. Bocchialini, R.A. Harrison, Joint EUV/radio observations of a solar filament. Sol. Phys. 199, 115–132 (2001)

    Article  ADS  Google Scholar 

  • A. Ciaravella, J.C. Raymond, B.J. Thompson, A. van Ballegooijen, L. Strachan, J. Li, L. Gardner, R. O’Neal, E. Antonucci, J. Kohl, G. Noci, Solar and heliospheric observatory observations of a helical coronal mass ejection. Astrophys. J. 529, 575–591 (2000). doi:10.1086/308260

    Article  ADS  Google Scholar 

  • A. Ciaravella, J.C. Raymond, A. van Ballegooijen, L. Strachan, A. Vourlidas, J. Li, J. Chen, A. Panasyuk, Physical parameters of the 2000 February 11 coronal mass ejection: Ultraviolet spectra versus white-light images. Astrophys. J. 597, 1118–1134 (2003). doi:10.1086/381220

    Article  ADS  Google Scholar 

  • D. Cirigliano, J.C. Vial, M. Rovira, Prominence corona transition region plasma diagnostics from SOHO observations. Sol. Phys. 223, 95–118 (2004). doi:10.1007/s11207-004-5101-0

    Article  ADS  Google Scholar 

  • L.E. Cram, I.M. Vardavas, Resonance line scattering from optically thin structures located above the solar limb. Sol. Phys. 57, 27–36 (1978). doi:10.1007/BF00152041

    Article  ADS  Google Scholar 

  • J.L. Culhane, L.K. Harra, A.M. James, K. Al-Janabi, L.J. Bradley, R.A. Chaudry, K. Rees, J.A. Tandy, P. Thomas, M.C.R. Whillock, B. Winter, G.A. Doschek, C.M. Korendyke, C.M. Brown, S. Myers, J. Mariska, J. Seely, J. Lang, B.J. Kent, B.M. Shaughnessy, P.R. Young, G.M. Simnett, C.M. Castelli, S. Mahmoud, H. Mapson-Menard, B.J. Probyn, R.J. Thomas, J. Davila, K. Dere, D. Windt, J. Shea, R. Hagood, R. Moye, H. Hara, T. Watanabe, K. Matsuzaki, T. Kosugi, V. Hansteen, Ø. Wikstol, The EUV imaging spectrometer for Hinode. Sol. Phys. 243, 19–61 (2007). doi:10.1007/s01007-007-0293-1

    Article  ADS  Google Scholar 

  • I.E. Dammasch, G. Stellmacher, E. Wiehr, Spectroscopy of solar prominences from space and ground. Astron. Nachr. 324, 338–339 (2003)

    Article  ADS  Google Scholar 

  • C.R. de Boer, G. Stellmacher, E. Wiehr, The hot prominence periphery in EUV lines. Astron. Astrophys. 334, 280–288 (1998)

    ADS  Google Scholar 

  • G. Del Zanna, F. Chiuderi-Drago, S. Parenti, SOHO CDS and SUMER observations of quiescent filaments and their interpretation. Astron. Astrophys. 420, 307–317 (2004). doi:10.1051/0004-6361:20034267

    Article  ADS  Google Scholar 

  • J.P. Delaboudinière, G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, F. Millier, X.Y. Song, B. Au, K.P. Dere, R.A. Howard, R. Kreplin, D.J. Michels, J.D. Moses, J.M. Defise, C. Jamar, P. Rochus, J.P. Chauvineau, J.P. Marioge, R.C. Catura, J.R. Lemen, L. Shing, R.A. Stern, J.B. Gurman, W.M. Neupert, A. Maucherat, F. Clette, P. Cugnon, E.L. van Dessel, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Sol. Phys. 162, 291–312 (1995). doi:10.1007/BF00733432

    Article  ADS  Google Scholar 

  • Y. Deng, Y. Lin, B. Schmieder, O. Engvold, Filament activation and magnetic reconnection. Sol. Phys. 209, 153–170 (2002). doi:10.1023/A:1020924406991

    Article  ADS  Google Scholar 

  • K.P. Dere, E. Landi, H.E. Mason, B.C. Monsignori Fossi, P.R. Young, CHIANTI—an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125, 149–173 (1997). doi:10.1051/aas:1997368

    Article  ADS  Google Scholar 

  • V. Domingo, B. Fleck, A.I. Poland, The SOHO mission: an overview. Sol. Phys. 162, 1–2 (1995). doi:10.1007/BF00733425

    Article  ADS  Google Scholar 

  • R.B. Dunn, Photometry of the solar chromosphere, PhD thesis, Harvard University, 1961

  • H. Ebadi, J. Vial, A. Ajabshirizadeh, The He II lines in the Lyman series profiles of solar prominences. Sol. Phys. 257, 91–98 (2009). doi:10.1007/s11207-009-9368-z

    Article  ADS  Google Scholar 

  • O. Engvold, The fine structure of prominences. I—Observations—H-alpha filtergrams. Sol. Phys. 49, 283–295 (1976). doi:10.1007/BF00162453

    Article  ADS  Google Scholar 

  • O. Engvold, Thermodynamic models and fine structure of prominences. Sol. Phys. 67, 351–355 (1980). doi:10.1007/BF00149812

    Article  ADS  Google Scholar 

  • O. Engvold, The prominence-corona transition region, in Solar and Stellar Coronal Structure and Dynamics, ed. by R.C. Altrock (1988), pp. 151–169

  • O. Engvold, Prominence environment, in Dynamics and Structure of Quiescent Solar Prominences, ed. by E.R. Priest. Astrophysics and Space Science Library, vol. 150 (1989), pp. 47–76

  • O. Engvold, E. Wiehr, A. Wittmann, The influence of spatial resolution on the Ca/+/K line width and shift in a quiescent prominence. Astron. Astrophys. 85, 326–328 (1980)

    ADS  Google Scholar 

  • O. Engvold, T. Hirayama, J.L. Leroy, E.R. Priest, E. Tandberg-Hanssen, Hvar reference atmosphere of quiescent prominences, in IAU Colloq. 117: Dynamics of Quiescent Prominences, ed. by V. Ruzdjak, E. Tandberg-Hanssen. Lecture Notes in Physics, vol. 363 (Springer, Berlin, 1990), p. 294. doi:10.1007/BFb0025640

    Chapter  Google Scholar 

  • U. Feldman, G.A. Dorschek, F.D. Rosenberg, XUV spectra of the 1973 June 15 solar flare observed from Skylab. II—Intersystem and forbidden transitions in transition zone and coronal ions. Astrophys. J. 215, 652–665 (1977). doi:10.1086/155399

    Article  ADS  Google Scholar 

  • J.M. Fontenla, M. Rovira, The Lyman alpha line in solar prominences. Sol. Phys. 85, 141–156 (1983). doi:10.1007/BF00148265

    Article  ADS  Google Scholar 

  • J.M. Fontenla, M. Rovira, Quiescent prominence threads models. Sol. Phys. 96, 53–92 (1985). doi:10.1007/BF00239794

    Article  ADS  Google Scholar 

  • J.M. Fontenla, E.J. Reichmann, E. Tandberg-Hanssen, The Lyman-alpha line in various solar features. I—Observations. Astrophys. J. 329, 464–481 (1988). doi:10.1086/166392

    Article  ADS  Google Scholar 

  • J.M. Fontenla, M. Rovira, J.C. Vial, P. Gouttebroze, Prominence thread models including ambipolar diffusion. Astrophys. J. 466, 496 (1996). doi:10.1086/177527

    Article  ADS  Google Scholar 

  • H. Gilbert, G. Kilper, D. Alexander, Observational evidence supporting cross-field diffusion of neutral material in solar filaments. Astrophys. J. 671, 978–989 (2007). doi:10.1086/522884

    Article  ADS  Google Scholar 

  • H.R. Gilbert, V.H. Hansteen, T.E. Holzer, Neutral atom diffusion in a partially ionized prominence plasma. Astrophys. J. 577, 464–474 (2002). doi:10.1086/342165

    Article  ADS  Google Scholar 

  • H.R. Gilbert, T.E. Holzer, R.M. MacQueen, A new technique for deriving prominence mass from SOHO/EIT Fe XII (19.5 nanometers) absorption features. Astrophys. J. 618, 524–536 (2005). doi:10.1086/425975

    Article  ADS  Google Scholar 

  • H.R. Gilbert, L.E. Falco, T.E. Holzer, R.M. MacQueen, Application of a new technique for deriving prominence mass from SOHO EIT Fe XII (19.5 nm) absorption features. Astrophys. J. 641, 606–610 (2006). doi:10.1086/500354

    Article  ADS  Google Scholar 

  • H.R. Gilbert, G. Kilper, T.A. Kucera, D. Alexander, J.B. Gurman, Comparing prominence absorption in different caronal lines (2010, in preparation)

  • L. Golub, J. Bookbinder, E. Deluca, M. Karovska, H. Warren, C.J. Schrijver, R. Shine, T. Tarbell, A. Title, J. Wolfson, B. Handy, C. Kankelborg, A new view of the solar corona from the Transition Region and Coronal Explorer (TRACE). Phys. Plasmas 6, 2205–2216 (1999). doi:10.1063/1.873473

    Article  ADS  Google Scholar 

  • L. Golub, E. Deluca, G. Austin, J. Bookbinder, D. Caldwell, P. Cheimets, J. Cirtain, M. Cosmo, P. Reid, A. Sette, M. Weber, T. Sakao, R. Kano, K. Shibasaki, H. Hara, S. Tsuneta, K. Kumagai, T. Tamura, M. Shimojo, J. McCracken, J. Carpenter, H. Haight, R. Siler, E. Wright, J. Tucker, H. Rutledge, M. Barbera, G. Peres, S. Varisco, The X-ray telescope (XRT) for the Hinode mission. Sol. Phys. 243, 63–86 (2007). doi:10.1007/s11207-007-0182-1

    Article  ADS  Google Scholar 

  • C. Gontikakis, J.C. Vial, P. Gouttebroze, Emission of hydrogen lines by moving solar prominences. Astron. Astrophys. 325, 803–812 (1997a)

    ADS  Google Scholar 

  • C. Gontikakis, J.C. Vial, P. Gouttebroze, Spectral diagnostics for eruptive prominences. Sol. Phys. 172, 189–197 (1997b)

    Article  ADS  Google Scholar 

  • P. Gouttebroze, Radiative transfer in cylindrical threads with incident radiation. II. 2D azimuth-dependent case. Astron. Astrophys. 434, 1165–1171 (2005). doi:10.1051/0004-6361:20042309

    Article  ADS  Google Scholar 

  • P. Gouttebroze, Radiative transfer in cylindrical threads with incident radiation. III. Hydrogen spectrum. Astron. Astrophys. 448, 367–374 (2006). doi:10.1051/0004-6361:20054139

    Article  ADS  Google Scholar 

  • P. Gouttebroze, Radiative transfer in cylindrical threads with incident radiation. IV. Time-dependent and thermal equilibrium models. Astron. Astrophys. 465, 1041–1049 (2007). doi:10.1051/0004-6361:20066636

    Article  ADS  Google Scholar 

  • P. Gouttebroze, Radiative transfer in cylindrical threads with incident radiation. V. 2D transfer with 3D velocity fields. Astron. Astrophys. 487, 805–813 (2008). doi:10.1051/0004-6361:20079272

    Article  MATH  ADS  Google Scholar 

  • P. Gouttebroze, P. Heinzel, Calcium to hydrogen line ratios in solar prominences. Astron. Astrophys. 385, 273–280 (2002). doi:10.1051/0004-6361:20020142

    Article  ADS  Google Scholar 

  • P. Gouttebroze, N. Labrosse, A ready-made code for the computation of prominence NLTE models. Sol. Phys. 196, 349–355 (2000)

    Article  ADS  Google Scholar 

  • P. Gouttebroze, N. Labrosse, Radiative transfer in cylindrical threads with incident radiation. VI. A hydrogen plus helium system. Astron. Astrophys. 503, 663–671 (2009). doi:10.1051/0004-6361/200811483

    Article  ADS  Google Scholar 

  • P. Gouttebroze, P. Lemaire, J.C. Vial, G. Artzner, The solar hydrogen Lyman-beta and Lyman-alpha lines—Disk center observations from OSO 8 compared with theoretical profiles. Astrophys. J. 225, 655–664 (1978). doi:10.1086/156526

    Article  ADS  Google Scholar 

  • P. Gouttebroze, P. Heinzel, J.C. Vial, The hydrogen spectrum of model prominences. Astron. Astrophys. Suppl. Ser. 99, 513–543 (1993)

    ADS  Google Scholar 

  • P. Gouttebroze, N. Labrosse, P. Heinzel, J.C. Vial, Prediction of line intensity ratios in solar prominences, in SOLMAG 2002. Proceedings of the Magnetic Coupling of the Solar Atmosphere Euroconference, ed. by H. Sawaya-Lacoste. ESA Special Publication, vol. 505 (2002), pp. 421–424

  • S. Gunár, P. Heinzel, U. Anzer, Prominence fine structures in a magnetic equilibrium. III. Lyman continuum in 2D configurations. Astron. Astrophys. 463, 737–743 (2007a). doi:10.1051/0004-6361:20066142

    Article  ADS  Google Scholar 

  • S. Gunár, P. Heinzel, B. Schmieder, P. Schwartz, U. Anzer, Properties of prominence fine-structure threads derived from SOHO/SUMER hydrogen Lyman lines. Astron. Astrophys. 472, 929–936 (2007b). doi:10.1051/0004-6361:20077785

    Article  ADS  Google Scholar 

  • S. Gunár, P. Heinzel, U. Anzer, B. Schmieder, On Lyman-line asymmetries in quiescent prominences. Astron. Astrophys. 490, 307–313 (2008). doi:10.1051/0004-6361:200810127

    Article  ADS  Google Scholar 

  • B.N. Handy, L.W. Acton, C.C. Kankelborg, C.J. Wolfson, D.J. Akin, M.E. Bruner, R. Caravalho, R.C. Catura, R. Chevalier, D.W. Duncan, C.G. Edwards, C.N. Feinstein, S.L. Freeland, F.M. Friedlaender, C.H. Hoffmann, N.E. Hurlburt, B.K. Jurcevich, N.L. Katz, G.A. Kelly, J.R. Lemen, M. Levay, R.W. Lindgren, D.P. Mathur, S.B. Meyer, S.J. Morrison, M.D. Morrison, R.W. Nightingale, T.P. Pope, R.A. Rehse, C.J. Schrijver, R.A. Shine, L. Shing, K.T. Strong, T.D. Tarbell, A.M. Title, D.D. Torgerson, L. Golub, J.A. Bookbinder, D. Caldwell, P.N. Cheimets, W.N. Davis, E.E. Deluca, R.A. McMullen, H.P. Warren, D. Amato, R. Fisher, H. Maldonado, C. Parkinson, The transition region and coronal explorer. Sol. Phys. 187, 229–260 (1999). doi:10.1023/A:1005166902804

    Article  ADS  Google Scholar 

  • R.A. Harrison, M.K. Carter, T.A. Clark, C. Lindsey, J.T. Jefferies, D.G. Sime, G. Watt, T.L. Roellig, E.E. Becklin, D.A. Naylor, G.J. Tompkins, D. Braun, An active solar prominence in 1.3 MM radiation. Astron. Astrophys. 274, 9 (1993)

    ADS  Google Scholar 

  • R.A. Harrison, E.C. Sawyer, M.K. Carter, A.M. Cruise, R.M. Cutler, A. Fludra, R.W. Hayes, B.J. Kent, J. Lang, D.J. Parker, J. Payne, C.D. Pike, S.C. Peskett, A.G. Richards, J.L. Gulhane, K. Norman, A.A. Breeveld, E.R. Breeveld, K.F. Al Janabi, A.J. McCalden, J.H. Parkinson, D.G. Self, P.D. Thomas, A.I. Poland, R.J. Thomas, W.T. Thompson, O. Kjeldseth-Moe, P. Brekke, J. Karud, P. Maltby, B. Aschenbach, H. Bräuninger, M. Kühne, J. Hollandt, O.H.W. Siegmund, M.C.E. Huber, A.H. Gabriel, H.E. Mason, B.J.I. Bromage, The coronal diagnostic spectrometer for the solar and heliospheric observatory. Sol. Phys. 162, 233–290 (1995). doi:10.1007/BF00733431

    Article  ADS  Google Scholar 

  • J.N. Heasley, D. Mihalas, Structure and spectrum of quiescent prominences—Energy balance and hydrogen spectrum. Astrophys. J. 205, 273–285 (1976). doi:10.1086/154273

    Article  ADS  Google Scholar 

  • J.N. Heasley, R.W. Milkey, Structure and spectrum of quiescent prominences. II—Hydrogen and helium spectra. Astrophys. J. 210, 827–835 (1976). doi:10.1086/154892

    Article  ADS  Google Scholar 

  • J.N. Heasley, R.W. Milkey, Structure and spectrum of quiescent prominences. III—Application of theoretical models in helium abundance determinations. Astrophys. J. 221, 677–688 (1978). doi:10.1086/156072

    Article  ADS  Google Scholar 

  • J.N. Heasley, R.W. Milkey, Structure and spectrum of quiescent prominences. IV—The ultraviolet ionization continua of hydrogen and helium. Astrophys. J. 268, 398–402 (1983). doi:10.1086/160965

    Article  ADS  Google Scholar 

  • J.N. Heasley, D. Mihalas, A.I. Poland, Theoretical Helium I emission-line intensities for quiescent prominences. Astrophys. J. 192, 181–192 (1974). doi:10.1086/153049

    Article  ADS  Google Scholar 

  • P. Heinzel, Resonance scattering of radiation in solar prominences. I Partial redistribution in optically thin subordinate lines. Bull. Astron. Inst. Czechoslov. 34, 1–17 (1983)

    ADS  Google Scholar 

  • P. Heinzel, Hydrogen lines formation in filamentary prominences. Hvar Obs. Bull. 13, 317 (1989)

    ADS  Google Scholar 

  • P. Heinzel, Hydrogen line formation in filamentary prominences, in IAU Colloq. 117: Dynamics of Quiescent Prominences, ed. by V. Ruzdjak, E. Tandberg-Hanssen. Lecture Notes in Physics, vol. 363 (Springer, Berlin, 1990), p. 279. doi:10.1007/BFb0025640

    Chapter  Google Scholar 

  • P. Heinzel, Multilevel NLTE radiative transfer in isolated atmospheric structures: implementation of the MALI-technique. Astron. Astrophys. 299, 563 (1995)

    ADS  Google Scholar 

  • P. Heinzel, Multiwavelength observations of solar prominences, in Solar and Stellar Physics Through Eclipses, ed. by O. Demircan, S.O. Selam, B. Albayrak. Astronomical Society of the Pacific Conference Series, vol. 370 (2007), p. 46

  • P. Heinzel, U. Anzer, Magnetic dips in prominences. Sol. Phys. 184, 103–111 (1999)

    Article  ADS  Google Scholar 

  • P. Heinzel, U. Anzer, Prominence fine structures in a magnetic equilibrium: Two-dimensional models with multilevel radiative transfer. Astron. Astrophys. 375, 1082–1090 (2001). doi:10.1051/0004-6361:20010926

    Article  ADS  Google Scholar 

  • P. Heinzel, U. Anzer, 2D radiative transfer in magnetically confined structures, in Stellar Atmosphere Modeling, ed. by I. Hubeny, D. Mihalas, K. Werner. Astronomical Society of the Pacific Conference Series, vol. 288 (2003), p. 441

  • P. Heinzel, B. Rompolt, Hydrogen emission from moving solar prominences. Sol. Phys. 110, 171–189 (1987). doi:10.1007/BF00148210

    Article  ADS  Google Scholar 

  • P. Heinzel, J.C. Vial, OSO-8 observations of a quiescent prominence—A comparison of Lyman-alpha with theoretical intensities. Astron. Astrophys. 121, 155–157 (1983)

    ADS  Google Scholar 

  • P. Heinzel, P. Gouttebroze, J.C. Vial, Formation of the hydrogen spectrum in quiescent prominences—One-dimensional models with standard partial redistribution. Astron. Astrophys. 183, 351–362 (1987)

    ADS  Google Scholar 

  • P. Heinzel, P. Gouttebroze, J.C. Vial, Non LTE modelling of prominences, in Universitat de les Illes Balears, Palma de Mallorca (Spain) (1988), p. 71

  • P. Heinzel, P. Gouttebroze, J.C. Vial, Theoretical correlations between prominence plasma parameters and the emitted radiation. Astron. Astrophys. 292, 656–668 (1994)

    ADS  Google Scholar 

  • P. Heinzel, V. Bommier, J.C. Vial, A complex diagnostic of solar prominences. Sol. Phys. 164, 211–222 (1996). doi:10.1007/BF00146635

    Article  ADS  Google Scholar 

  • P. Heinzel, N. Mein, P. Mein, Cloud model with variable source function for solar Hα structures. II. Dynamical models. Astron. Astrophys. 346, 322–328 (1999)

    ADS  Google Scholar 

  • P. Heinzel, B. Schmieder, J.C. Vial, P. Kotrč, SOHO/SUMER observations and analysis of the hydrogen Lyman spectrum in solar prominences. Astron. Astrophys. 370, 281–297 (2001a). doi:10.1051/0004-6361:20010265

    Article  ADS  Google Scholar 

  • P. Heinzel, B. Schmieder, K. Tziotziou, Why are solar filaments more extended in extreme-ultraviolet lines than in Hα? Astrophys. J. 561, 223–227 (2001b). doi:10.1086/324755

    Article  ADS  Google Scholar 

  • P. Heinzel, U. Anzer, B. Schmieder, A spectroscopic model of EUV filaments. Sol. Phys. 216, 159–171 (2003a). doi:10.1023/A:1026130028966

    Article  ADS  Google Scholar 

  • P. Heinzel, U. Anzer, B. Schmieder, P. Schwartz, EUV-filaments and their mass loading, in Solar Variability as an Input to the Earth’s Environment, ed. by A. Wilson. ESA Special Publication, vol. 535 (2003b), pp. 447–457

  • P. Heinzel, U. Anzer, S. Gunár, Prominence fine structures in a magnetic equilibrium. II. A grid of two-dimensional models. Astron. Astrophys. 442, 331–343 (2005). doi:10.1051/0004-6361:20053360

    Article  ADS  Google Scholar 

  • P. Heinzel, B. Schmieder, F. Fárník, P. Schwartz, N. Labrosse, P. Kotrč, U. Anzer, G. Molodij, A. Berlicki, E.E. DeLuca, L. Golub, T. Watanabe, T. Berger, Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence. Astrophys. J. 686, 1383–1396 (2008). doi:10.1086/591018

    Article  ADS  Google Scholar 

  • T. Hirayama, On the model of the solar quiescent prominence and the effect of the solar UV radiation on the prominence. Publ. Astron. Soc. Jpn. 15, 122 (1963)

    ADS  Google Scholar 

  • T. Hirayama, Spectral analysis of four quiescent prominences observed at the Peruvian eclipse. Sol. Phys. 17, 50–75 (1971). doi:10.1007/BF00152861

    Article  ADS  Google Scholar 

  • T. Hirayama, Ionized helium in prominences and in the chromosphere. Sol. Phys. 24, 310–323 (1972). doi:10.1007/BF00153371

    Article  ADS  Google Scholar 

  • T. Hirayama, Modern observations of solar prominences. Sol. Phys. 100, 415–434 (1985). doi:10.1007/BF00158439

    Article  ADS  Google Scholar 

  • T. Hirayama, Physical conditions in prominences, in IAU Colloq. 117: Dynamics of Quiescent Prominences, ed. by V. Ruzdjak, E. Tandberg-Hanssen. Lecture Notes in Physics, vol. 363 (Springer, Berlin, 1990), pp. 187–203

    Chapter  Google Scholar 

  • R.A. Howard, J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, S.P. Plunkett, C.M. Korendyke, J.W. Cook, A. Hurley, J.M. Davila, W.T. Thompson, O.C. St Cyr, E. Mentzell, K. Mehalick, J.R. Lemen, J.P. Wuelser, D.W. Duncan, T.D. Tarbell, C.J. Wolfson, A. Moore, R.A. Harrison, N.R. Waltham, J. Lang, C.J. Davis, C.J. Eyles, H. Mapson-Menard, G.M. Simnett, J.P. Halain, J.M. Defise, E. Mazy, P. Rochus, R. Mercier, M.F. Ravet, F. Delmotte, F. Auchere, J.P. Delaboudiniere, V. Bothmer, W. Deutsch, D. Wang, N. Rich, S. Cooper, V. Stephens, G. Maahs, R. Baugh, D. McMullin, T. Carter, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67–115 (2008). doi:10.1007/s11214-008-9341-4

    Article  ADS  Google Scholar 

  • I. Hubeny, A modified Rybicki method and the partial coherent scattering approximation. Astron. Astrophys. 145, 461–474 (1985)

    ADS  Google Scholar 

  • I. Hubeny, Accelerated lambda iteration: An overview, in Stellar Atmosphere Modeling, ed. by I. Hubeny, D. Mihalas, K. Werner. Astronomical Society of the Pacific Conference Series, vol. 288 (2003), p. 17

  • I. Hubeny, T. Lanz, Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method. Astrophys. J. 439, 875–904 (1995). doi:10.1086/175226

    Article  ADS  Google Scholar 

  • I. Hubeny, B.W. Lites, Partial redistribution in multilevel atoms. I. Method and application to the solar hydrogen line formation. Astrophys. J. 455, 376 (1995). doi:10.1086/176584

    Article  ADS  Google Scholar 

  • D.G. Hummer, Non-coherent scattering: I. The redistribution function with Doppler broadening. Mon. Not. R. Astron. Soc. 125, 21–37 (1962)

    ADS  Google Scholar 

  • D.G. Hummer, Non-coherent scattering-VI. Solutions of the transfer problem with a frequency-dependent source function. Mon. Not. R. Astron. Soc. 145, 95 (1969)

    ADS  Google Scholar 

  • C.L. Hyder, B.W. Lites, Hα Doppler brightening and Lyman-α Doppler dimming in moving Hα prominences. Sol. Phys. 14, 147–156 (1970). doi:10.1007/BF00240170

    ADS  Google Scholar 

  • D.R. Inglis, E. Teller, Ionic depression of series limits in Cne-electron spectra. Astrophys. J. 90, 439 (1939). doi:10.1086/144118

    Article  MATH  ADS  Google Scholar 

  • Y. Irimajiri, T. Takano, H. Nakajima, K. Shibasaki, Y. Hanaoka, K. Ichimoto, Simultaneous multifrequency observations of an eruptive prominence at millimeter wavelengths. Sol. Phys. 156, 363–375 (1995). doi:10.1007/BF00670232

    Article  ADS  Google Scholar 

  • G.S. Ivanov-Kholodnyi, G.M. Nikol’skii, Ultraviolet solar radiation and the transition layer between the chromosphere and the corona. Astron. Zh. 38, 45 (1961)

    ADS  Google Scholar 

  • S. Jejčič, P. Heinzel, Electron densities in quiescent prominences derived from eclipse observations. Sol. Phys. 254, 89–100 (2009). doi:10.1007/s11207-008-9289-2

    Article  ADS  Google Scholar 

  • P.G. Judge, On spectroscopic filling factors and the solar transition region. Astrophys. J. 531, 585–590 (2000). doi:10.1086/308458

    Article  ADS  Google Scholar 

  • M. Kanno, G.L. Withbroe, R.W. Noyes, Analysis of extreme-ultraviolet spectroheliograms of solar prominences. Sol. Phys. 69, 313–326 (1981). doi:10.1007/BF00149997

    Article  ADS  Google Scholar 

  • J. Keady, D. Kilcrease, in Allen’s astrophysical quantities, ed. by A.N. Cox (Springer, New York, 2000), pp. 95–120. Chap. Radiation

    Google Scholar 

  • G. Kilper, H. Gilbert, D. Alexander, Mass composition in pre-eruption quiet Sun filaments. Astrophys. J. 704, 522–530 (2009). doi:10.1088/0004-637X/704/1/522

    Article  ADS  Google Scholar 

  • O. Kjeldseth-Moe, J.W. Cook, S.A. Mango, EUV observations of quiescent prominences from SKYLAB. Sol. Phys. 61, 319–334 (1979). doi:10.1007/BF00150417

    Article  ADS  Google Scholar 

  • J.L. Kohl, G.L. Withbroe, EUV spectroscopic plasma diagnostics for the solar wind acceleration region. Astrophys. J. 256, 263–270 (1982). doi:10.1086/159904

    Article  ADS  Google Scholar 

  • J.L. Kohl, R. Esser, L.D. Gardner, S. Habbal, P.S. Daigneau, E.F. Dennis, G.U. Nystrom, A. Panasyuk, J.C. Raymond, P.L. Smith, L. Strachan, A.A. van Ballegooijen, G. Noci, S. Fineschi, M. Romoli, A. Ciaravella, A. Modigliani, M.C.E. Huber, E. Antonucci, C. Benna, S. Giordano, G. Tondello, P. Nicolosi, G. Naletto, C. Pernechele, D. Spadaro, G. Poletto, S. Livi, O. von der Lühe, J. Geiss, J.G. Timothy, G. Gloeckler, A. Allegra, G. Basile, R. Brusa, B. Wood, O.H.W. Siegmund, W. Fowler, R. Fisher, M. Jhabvala, The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. Sol. Phys. 162, 313–356 (1995). doi:10.1007/BF00733433

    Article  ADS  Google Scholar 

  • C.M. Korendyke, A. Vourlidas, J.W. Cook, K.P. Dere, R.A. Howard, J.S. Morrill, J.D. Moses, N.E. Moulton, D.G. Socker, High-resolution imaging of the upper solar chromosphere: First light performance of the very-high-resolution advanced ultraviolet telescope. Sol. Phys. 200, 63–73 (2001)

    Article  ADS  Google Scholar 

  • T. Kosugi, K. Matsuzaki, T. Sakao, T. Shimizu, Y. Sone, S. Tachikawa, T. Hashimoto, K. Minesugi, A. Ohnishi, T. Yamada, S. Tsuneta, H. Hara, K. Ichimoto, Y. Suematsu, M. Shimojo, T. Watanabe, S. Shimada, J.M. Davis, L.D. Hill, J.K. Owens, A.M. Title, J.L. Culhane, L.K. Harra, G.A. Doschek, L. Golub, The Hinode (Solar-B) mission: An overview. Sol. Phys. 243, 3–17 (2007). doi:10.1007/s11207-007-9014-6

    Article  ADS  Google Scholar 

  • S. Koutchmy, C. Lebecq, G. Stellmacher, The electron density of faint prominences observed during the solar eclipse of July 31, 1981. Astron. Astrophys. 119, 261–264 (1983)

    ADS  Google Scholar 

  • T.A. Kucera, E. Landi, Ultraviolet observations of prominence activation and cool loop dynamics. Astrophys. J. 645, 1525–1536 (2006). doi:10.1086/504398

    Article  ADS  Google Scholar 

  • T.A. Kucera, E. Landi, An observation of low-level heating in an erupting prominence. Astrophys. J. 673, 611–620 (2008). doi:10.1086/523694

    Article  ADS  Google Scholar 

  • T.A. Kucera, G.A. Dulk, A.L. Kiplinger, R.M. Winglee, T.S. Bastian, M. Graeter, Multiple wavelength observations of an off-limb eruptive solar flare. Astrophys. J. 412, 853–864 (1993). doi:10.1086/172967

    Article  ADS  Google Scholar 

  • T.A. Kucera, V. Andretta, A.I. Poland, Neutral hydrogen column depths in prominences using EUV absorption features. Sol. Phys. 183, 107–121 (1998)

    Article  ADS  Google Scholar 

  • T.A. Kucera, G. Aulanier, B. Schmieder, N. Mein, J.C. Vial, Filament channel structures in a SI IV line related to a 3d magnetic model. Sol. Phys. 186, 259–280 (1999)

    Article  ADS  Google Scholar 

  • T.A. Kucera, M. Tovar, B. de Pontieu, Prominence motions observed at high cadences in temperatures from 10 000 to 250 000 K. Sol. Phys. 212, 81–97 (2003). doi:10.1023/A:1022900604972

    Article  ADS  Google Scholar 

  • N.P.M. Kuin, A.I. Poland, Opacity effects on the radiative losses of coronal loops. Astrophys. J. 370, 763–774 (1991). doi:10.1086/169859

    Article  ADS  Google Scholar 

  • P. Kunasz, L.H. Auer, Short characteristic integration of radiative transfer problems: formal solution in two-dimensional slabs. J. Quant. Spectrosc. Radiat. Transfer 39, 67–79 (1988). doi:10.1016/0022-4073(88)90021-0

    Article  ADS  Google Scholar 

  • N. Labrosse, P. Gouttebroze, Formation of helium spectrum in solar quiescent prominences. Astron. Astrophys. 380, 323–340 (2001). doi:10.1051/0004-6361:20011395

    Article  ADS  Google Scholar 

  • N. Labrosse, P. Gouttebroze, Non-LTE radiative transfer in model prominences. I. Integrated intensities of He I triplet lines. Astrophys. J. 617, 614–622 (2004). doi:10.1086/425168

    Article  ADS  Google Scholar 

  • N. Labrosse, P. Gouttebroze, P. Heinzel, J.C. Vial, Line profiles and intensity ratios in prominence models with a prominence to corona interface, in Solar Variability: From Core to Outer Frontiers, ed. by J. Kuijpers. ESA Special Publication, vol. 506 (2002), pp. 451–454

  • N. Labrosse, J.C. Vial, P. Gouttebroze, Plasma diagnostic of a solar prominence from hydrogen and helium resonance lines, in SF2A-2006: Semaine de l’Astrophysique Francaise, ed. by D. Barret, F. Casoli, G. Lagache, A. Lecavelier, L. Pagani (2006a), p. 549

  • N. Labrosse, J.C. Vial, P. Gouttebroze, The helium spectrum in erupting solar prominences, in Solar Active Regions and 3D Magnetic Structure, 26th meeting of the IAU, Joint Discussion 3, 16–17 August, 2006, Prague, Czech Republic, JD03, #47 3 (2006b)

  • N. Labrosse, P. Gouttebroze, J.C. Vial, Effect of motions in prominences on the helium resonance lines in the extreme ultraviolet. Astron. Astrophys. 463, 1171–1179 (2007a). doi:10.1051/0004-6361:20065775

    Article  ADS  Google Scholar 

  • N. Labrosse, P. Gouttebroze, J.C. Vial, Spectral diagnostics of active prominences, in The Physics of Chromospheric Plasmas, ed. by P. Heinzel, I. Dorotovič, R.J. Rutten. Astronomical Society of the Pacific Conference Series, vol. 368 (2007b), p. 337

  • N. Labrosse, J.C. Vial, P. Gouttebroze, Diagnostics of active and eruptive prominences through hydrogen and helium lines modelling. Ann. Geophys. 26, 2961–2965 (2008)

    Article  ADS  Google Scholar 

  • E. Landi, M. Landini, Simultaneous temperature and density diagnostics of optically thin plasmas. Astron. Astrophys. 327, 1230–1241 (1997)

    ADS  Google Scholar 

  • D.A. Landman, Physical conditions in the cool parts of prominences. II—The MG triplet lines. Astrophys. J. 279, 438–445 (1984). doi:10.1086/161906

    Article  ADS  Google Scholar 

  • D.A. Landman, Physical conditions in the cool parts of prominences and spicules—The effects of model atom level truncation on the derived plasma parameters. Astrophys. J. 305, 546–552 (1986). doi:10.1086/164267

    Article  ADS  Google Scholar 

  • L. Léger, F. Paletou, 2D non-LTE radiative modelling of He I spectral lines formed in solar prominences. Astron. Astrophys. 498, 869–875 (2009). doi:10.1051/0004-6361/200810296

    Article  ADS  Google Scholar 

  • K. Li, B. Schmieder, J.M. Malherbe, T. Roudier, J.E. Wiik, Physical properties of the quiescent prominence of 5 June 1996, from Hα observations. Sol. Phys. 183, 323–338 (1998)

    Article  ADS  Google Scholar 

  • K. Li, X. Gu, X. Chen, Calculations and physical properties of the D3 emission lines of a prominence. Mon. Not. R. Astron. Soc. 313, 761–766 (2000). doi:10.1046/j.1365-8711.2000.03336.x

    Article  ADS  Google Scholar 

  • Y. Lin, O.R. Engvold, J.E. Wiik, Counterstreaming in a large polar crown filament. Sol. Phys. 216, 109–120 (2003). doi:10.1023/A:1026150809598

    Article  ADS  Google Scholar 

  • Y. Lin, O. Engvold, L. Rouppe van der Voort, J.E. Wiik, T.E. Berger, Thin threads of solar filaments. Sol. Phys. 226, 239–254 (2005). doi:10.1007/s11207-005-6876-3

    Article  ADS  Google Scholar 

  • Y. Lin, O. Engvold, L.H.M. Rouppe van der Voort, M. van Noort, Evidence of traveling waves in filament threads. Sol. Phys. 246, 65–72 (2007). doi:10.1007/s11207-007-0402-8

    Article  ADS  Google Scholar 

  • Y. Lin, S.F. Martin, O. Engvold, L.H.M. Rouppe van der Voort, M. van Noort, On small active region filaments, fibrils and surges. Adv. Space Res. 42, 803–811 (2008). doi:10.1016/j.asr.2007.05.052

    Article  ADS  Google Scholar 

  • Y.E. Litvinenko, S.F. Martin, Magnetic reconnection as the cause of a photospheric canceling feature and mass flows in a filament. Sol. Phys. 190, 45–58 (1999). doi:10.1023/A:1005284116353

    Article  ADS  Google Scholar 

  • Y. Liu, H. Kurokawa, K. Shibata, Production of filaments by surges. Astrophys. J. 631, 93–96 (2005). doi:10.1086/496919

    Article  ADS  Google Scholar 

  • D.H. Mackay, K. Galsgaard, Evolution of a density enhancement in a stratified atmosphere with uniform vertical magnetic field. Sol. Phys. 198, 289–312 (2001). doi:10.1023/A:1005266330720

    Article  ADS  Google Scholar 

  • D.H. Mackay, J.T. Karpen, J.L. Ballester, B. Schmieder, G. Aulanier, Physics of solar prominences: II—magnetic structure and dynamics. Space Sci. Rev. (2010). doi:10.1007/s11214-010-9628-0, this issue

  • M.S. Madjarska, J.C. Vial, K. Bocchialini, V.N. Dermendjiev, Plasma diagnostics of a solar prominence observed on 12 June 1997 by EIT, Sumer and CDS, in 8th SOHO Workshop: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona, ed. by J.C. Vial, B. Kaldeich-Schü. ESA Special Publication, vol. 446 (1999), p. 467

  • J.T. Mariska, Relative chemical abundances in different solar regions. Astrophys. J. 235, 268–273 (1980). doi:10.1086/157630

    Article  ADS  Google Scholar 

  • J.T. Mariska, The Solar Transition Region (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  • J.T. Mariska, G.A. Doschek, U. Feldman, Extreme-ultraviolet limb spectra of a prominence observed from SKYLAB. Astrophys. J. 232, 929–939 (1979). doi:10.1086/157356

    Article  ADS  Google Scholar 

  • H.E. Mason, B.C. Monsignori Fossi, Spectroscopic diagnostics in the VUV for solar and stellar plasmas. Astron. Astrophys. Rev. 6, 123–179 (1994). doi:10.1007/BF01208253

    Article  ADS  Google Scholar 

  • N. Mein, P. Mein, P. Heinzel, J.C. Vial, J.M. Malherbe, J. Staiger, Cloud model with variable source function for solar Hα structures. Astron. Astrophys. 309, 275–283 (1996)

    ADS  Google Scholar 

  • P. Mein, N. Mein, Dynamical fine structure of a quiescent prominence. Sol. Phys. 136, 317–333 (1991). doi:10.1007/BF00146539

    Article  ADS  Google Scholar 

  • D. Mihalas, Stellar Atmospheres, 2nd edn. (Freeman, San Francisco, 1978)

    Google Scholar 

  • D. Mihalas, L.H. Auer, B.R. Mihalas, Two-dimensional radiative transfer. I—Planar geometry. Astrophys. J. 220, 1001–1023 (1978). doi:10.1086/155988

    Article  ADS  Google Scholar 

  • R.W. Milkey, D. Mihalas, Resonance-line transfer with partial redistribution: A preliminary study of Lyman α in the solar chromosphere. Astrophys. J. 185, 709–726 (1973). doi:10.1086/152448

    Article  ADS  Google Scholar 

  • R.W. Milkey, J.N. Heasley, H.A. Beebe, Helium excitation in the solar chromosphere: He I in a homogeneous chromosphere. Astrophys. J. 186, 1043–1052 (1973). doi:10.1086/152568

    Article  ADS  Google Scholar 

  • R.W. Milkey, J.N. Heasley, E.J. Schmahl, O. Engvold, Frequency redistribution effects in the formation of Lyman alpha in prominences and their influence on the ratio of H-alpha to L-alpha, in IAU Colloq. 44: Physics of Solar Prominences, ed. by E. Jensen, P. Maltby, F.Q. Orrall (1979), pp. 53–55

  • B.C. Monsignori Fossi, M. Landini, Models for inner corona parameters. Adv. Space Res. 11, 281–292 (1991). doi:10.1016/0273-1177(91)90121-Y

    Article  ADS  Google Scholar 

  • N.N. Morozhenko, Helium Excitation and Structure of Quiescent Solar Prominences, ed. by V.I. Voroshilov (1970), p. 176

  • N.N. Morozhenko, Radiation transfer in prominences with filamentary structure. Sol. Phys. 58, 47–56 (1978). doi:10.1007/BF00152554

    Article  ADS  Google Scholar 

  • N.N. Morozhenko, On the excitation of lower levels of singlet helium in quiescent prominences. Sol. Phys. 92, 153–160 (1984). doi:10.1007/BF00157242

    Article  ADS  Google Scholar 

  • N.N. Morozhenko, V.V. Zharkova, The spectral properties of filamentary, physically inhomogeneous prominences. II—Hydrogen (second level excitation, ionization). Astrom. Astrofiz. 47, 34–41 (1982)

    ADS  Google Scholar 

  • D.C. Morton, K.G. Widing, The solar Lyman-alpha emission line. Astrophys. J. 133, 596 (1961). doi:10.1086/147062

    Article  ADS  Google Scholar 

  • R.W. Noyes, W. Kalkofen, The solar Lyman continuum and the structure of the solar chromosphere. Sol. Phys. 15, 120–138 (1970). doi:10.1007/BF00149479

    Article  ADS  Google Scholar 

  • R.W. Noyes, A.K. Dupree, M.C.E. Huber, W.H. Parkinson, E.M. Reeves, G.L. Withbroe, Extreme-ultraviolet emission from solar prominences. Astrophys. J. 178, 515–526 (1972). doi:10.1086/151812

    Article  ADS  Google Scholar 

  • L. Ofman, T.A. Kucera, Z. Mouradian, A.I. Poland, SUMER observations of the evolution and the disappearance of a solar prominence. Sol. Phys. 183, 97–106 (1998)

    Article  ADS  Google Scholar 

  • T.J. Okamoto, S. Tsuneta, T.E. Berger, K. Ichimoto, Y. Katsukawa, B.W. Lites, S. Nagata, K. Shibata, T. Shimizu, R.A. Shine, Y. Suematsu, T.D. Tarbell, A.M. Title, Coronal transverse magnetohydrodynamic waves in a solar prominence. Science 318, 1577 (2007). doi:10.1126/science.1145447

    Article  ADS  Google Scholar 

  • R. Oliver, Prominence seismology using small amplitude oscillations. Space Sci. Rev. 39 (2009). doi:10.1007/s11214-009-9527-4

  • G.L. Olson, L.H. Auer, J.R. Buchler, A rapidly convergent iterative solution of the non-LTE radiation transfer problem. J. Quant. Spectrosc. Radiat. Transfer 35, 431–442 (1986). doi:10.1016/0022-4073(86)90030-0

    Article  ADS  Google Scholar 

  • A. Omont, E.W. Smith, J. Cooper, Redistribution of resonance radiation. I. The effect of collisions. Astrophys. J. 175, 185 (1972). doi:10.1086/151548

    Article  ADS  Google Scholar 

  • F.Q. Orrall, E.J. Schmahl, The prominence-corona interface compared with the chromosphere-corona transition region. Sol. Phys. 50, 365–381 (1976). doi:10.1007/BF00155299

    Article  ADS  Google Scholar 

  • F.Q. Orrall, E.J. Schmahl, The H I Lyman continuum in solar prominences and its interpretation in the presence of inhomogeneities. Astrophys. J. 240, 908–922 (1980). doi:10.1086/158304

    Article  ADS  Google Scholar 

  • F. Paletou, Two-dimensional multilevel radiative transfer with standard partial frequency redistribution in isolated solar atmospheric structures. Astron. Astrophys. 302, 587 (1995)

    ADS  Google Scholar 

  • F. Paletou, J.C. Vial, L.H. Auer, Two-dimensional radiative transfer with partial frequency redistribution. II. Application to resonance lines in quiescent prominences. Astron. Astrophys. 274, 571 (1993)

    ADS  Google Scholar 

  • S. Parenti, J.C. Vial, Prominence and quiet-Sun plasma parameters derived from FUV spectral emission. Astron. Astrophys. 469, 1109–1115 (2007). doi:10.1051/0004-6361:20077196

    Article  ADS  Google Scholar 

  • S. Parenti, J.C. Vial, P. Lemaire, Prominence atlas in the SUMER range 800 1250 Å: I. Observations, data reduction and preliminary results. Sol. Phys. 220, 61–80 (2004). doi:10.1023/B:sola.0000023444.58697.e7

    Article  ADS  Google Scholar 

  • S. Parenti, P. Lemaire, J.C. Vial, Solar hydrogen-Lyman continuum observations with SOHO/SUMER. Astron. Astrophys. 443, 685–689 (2005a). doi:10.1051/0004-6361:20053431

    Article  ADS  Google Scholar 

  • S. Parenti, J.C. Vial, P. Lemaire, Prominence atlas in the SUMER range 800–1250 Å. II. Line profile properties and ions identifications. Astron. Astrophys. 443, 679–684 (2005b). doi:10.1051/0004-6361:20053122

    Article  ADS  Google Scholar 

  • S. Patsourakos, J.C. Vial, Soho contribution to prominence science. Sol. Phys. 208, 253–281 (2002)

    Article  ADS  Google Scholar 

  • S. Patsourakos, P. Gouttebroze, A. Vourlidas, The quiet Sun network at subarcsecond resolution: VAULT observations and radiative transfer modeling of cool loops. Astrophys. J. 664, 1214–1220 (2007). doi:10.1086/518645

    Article  ADS  Google Scholar 

  • M.J. Penn, An erupting active region filament: Three-dimensional trajectory and hydrogen column density. Sol. Phys. 197, 313–335 (2000)

    Article  ADS  Google Scholar 

  • K.J.H. Phillips, U. Feldman, E. Landi, Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  • S. Pojoga, Emission measure of prominence-corona transition region, in IAU Colloq. 144: Solar Coronal Structures (1994), p. 357

  • S. Pojoga, R. Molowny-Horas, The transverse velocity field of an EUV solar prominence. Sol. Phys. 185, 113–125 (1999)

    Article  ADS  Google Scholar 

  • S. Pojoga, A.G. Nikoghossian, Z. Mouradian, A statistical approach to the investigation of fine structure of solar prominences. Astron. Astrophys. 332, 325–338 (1998)

    ADS  Google Scholar 

  • A. Poland, U. Anzer, Energy balance in cool quiescent prominences. Sol. Phys. 19, 401–413 (1971). doi:10.1007/BF00146067

    Article  ADS  Google Scholar 

  • A.I. Poland, J.T. Mariska, A model for the structure and formation of prominences, in Universitat de les Illes Balears, Palma de Mallorca (Spain) (1988), p. 133

  • A.I. Poland, E. Tandberg-Hanssen, Physical conditions in a quiescent prominence derived from UV spectra obtained with the UVSP instrument on the SMM. Sol. Phys. 84, 63–70 (1983). doi:10.1007/BF00157443

    Article  ADS  Google Scholar 

  • S.R. Pottasch, The lower solar corona: Interpretation of the ultraviolet spectrum. Astrophys. J. 137, 945 (1963). doi:10.1086/147569

    Article  ADS  Google Scholar 

  • S.R. Pottasch, On the interpretation of the solar ultraviolet emission line spectrum. Space Sci. Rev. 3, 816–855 (1964). doi:10.1007/BF00177958

    Article  ADS  Google Scholar 

  • J.D. Purcell, R. Tousey, The profile of solar hydrogen-Lyman-α. J. Geophys. Res. 65, 370 (1960). doi:10.1029/JZ065i001p00370

    Article  ADS  Google Scholar 

  • P. Rudawy, P. Heinzel, Hydrogen photoionization rates for chromospheric and prominence plasmas. Sol. Phys. 138, 123–131 (1992). doi:10.1007/BF00146200

    Article  ADS  Google Scholar 

  • G.B. Rybicki, D.G. Hummer, An accelerated lambda iteration method for multilevel radiative transfer. I—Non-overlapping lines with background continuum. Astron. Astrophys. 245, 171–181 (1991)

    ADS  Google Scholar 

  • G.B. Rybicki, D.G. Hummer, An accelerated lambda iteration method for multilevel radiative transfer. II—Overlapping transitions with full continuum. Astron. Astrophys. 262, 209–215 (1992)

    ADS  Google Scholar 

  • E.J. Schmahl, F.Q. Orrall, Interpretation of the prominence differential emissions measure for 3 geometries. NASA Conf. Publ. 2442, 127–133 (1986)

    Google Scholar 

  • B. Schmieder, Overall properties and steady flows, in Dynamics and Structure of Quiescent Solar Prominences (1988), pp. 15–46

  • B. Schmieder, M.A. Raadu, J.E. Wiik, Fine structure of solar filaments. II—Dynamics of threads and footpoints. Astron. Astrophys. 252, 353–365 (1991)

    ADS  Google Scholar 

  • B. Schmieder, P. Heinzel, T. Kucera, J.C. Vial, Filament observations with SOHO Sumer/cds: The behaviour of hydrogen Lyman lines. Sol. Phys. 181, 309–326 (1998)

    Article  ADS  Google Scholar 

  • B. Schmieder, P. Heinzel, J.C. Vial, P. Rudawy, SOHO/SUMER observations and analysis of hydrogen Lyman lines in a quiescent prominence. Sol. Phys. 189, 109–127 (1999)

    Article  ADS  Google Scholar 

  • B. Schmieder, C. Delannée, D.Y. Yong, J.C. Vial, M. Madjarska, Multi-wavelength study of the slow “disparition brusque” of a filament observed with SOHO. Astron. Astrophys. 358, 728–740 (2000)

    ADS  Google Scholar 

  • B. Schmieder, K. Tziotziou, P. Heinzel, Spectroscopic diagnostics of an Hα and EUV filament observed with THEMIS and SOHO. Astron. Astrophys. 401, 361–375 (2003). doi:10.1051/0004-6361:20030126

    Article  ADS  Google Scholar 

  • B. Schmieder, Y. Lin, P. Heinzel, P. Schwartz, Multi-wavelength study of a high-latitude EUV filament. Sol. Phys. 221, 297–323 (2004a). doi:10.1023/B:SOLA.0000035059.50427.68

    Article  ADS  Google Scholar 

  • B. Schmieder, N. Mein, Y. Deng, C. Dumitrache, J.M. Malherbe, J. Staiger, E.E. Deluca, Magnetic changes observed in the formation of two filaments in a complex active region: TRACE and MSDP observations. Sol. Phys. 223, 119–141 (2004b). doi:10.1007/s11207-004-1107-x

    Article  ADS  Google Scholar 

  • B. Schmieder, S. Gunár, P. Heinzel, U. Anzer, Spectral diagnostics of the magnetic field orientation in a prominence observed with SOHO/SUMER. Sol. Phys. 241, 53–66 (2007). doi:10.1007/s11207-007-0251-5

    Article  ADS  Google Scholar 

  • B. Schmieder, V. Bommier, R. Kitai, T. Matsumoto, T.T. Ishii, M. Hagino, H. Li, L. Golub, Magnetic causes of the eruption of a quiescent filament. Sol. Phys. 247, 321–333 (2008). doi:10.1007/s11207-007-9100-9

    Article  ADS  Google Scholar 

  • B. Schmieder, R. Chandra, A. Berlicki, P. Mein, Velocity vectors of a quiescent prominence observed by Hinode/SOT and the MSDP (Meudon). ArXiv e-prints, 2010

  • P. Schwartz, P. Heinzel, U. Anzer, B. Schmieder, Determination of the 3D structure of an EUV-filament observed by SoHO/CDS, SoHO/SUMER and VTT/MSDP. Astron. Astrophys. 421, 323–338 (2004). doi:10.1051/0004-6361:20034199

    Article  ADS  Google Scholar 

  • P. Schwartz, P. Heinzel, B. Schmieder, U. Anzer, Study of an extended EUV filament using SoHO/SUMER observations of the hydrogen Lyman lines. Astron. Astrophys. 459, 651–661 (2006). doi:10.1051/0004-6361:20065619

    Article  ADS  Google Scholar 

  • N.R. Sheeley Jr., A volcanic origin for high-FIP material in the solar atmosphere. Astrophys. J. 440, 884 (1995). doi:10.1086/175326

    Article  ADS  Google Scholar 

  • R.K. Smith, N.S. Brickhouse, D.A. Liedahl, J.C. Raymond, Collisional plasma models with APEC/APED: Emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J. 556, 91–95 (2001). doi:10.1086/322992

    Article  ADS  Google Scholar 

  • D.S. Spicer, U. Feldman, K.G. Widing, M. Rilee, The neon-to-magnesium abundance ratio as a tracer of the source region of prominence material. Astrophys. J. 494, 450 (1998). doi:10.1086/305203

    Article  ADS  Google Scholar 

  • G. Stellmacher, E. Wiehr, The helium singlet-to-triplet line ratio in solar prominences. Astron. Astrophys. 319, 669–672 (1997)

    ADS  Google Scholar 

  • G. Stellmacher, E. Wiehr, Two-dimensional photometric analysis of emission lines in quiescent prominences. Sol. Phys. 196, 357–367 (2000)

    Article  ADS  Google Scholar 

  • G. Stellmacher, S. Koutchmy, C. Lebecq, The 1981 total solar eclipse. III—Photometric study of the prominence remnant in the reversing south polar field. Astron. Astrophys. 162, 307–311 (1986)

    ADS  Google Scholar 

  • G. Stellmacher, E. Wiehr, I.E. Dammasch, Spectroscopy of solar prominences simultaneously from space and ground. Sol. Phys. 217, 133–155 (2003)

    Article  ADS  Google Scholar 

  • E. Tandberg-Hanssen, The Nature of Solar Prominences (Kluwer, Dordrecht, 1995)

    Google Scholar 

  • R. Tousey, Apollo Telescope Mount of SKYLAB—an overview. Appl. Opt. 16, 825–836 (1977)

    ADS  Google Scholar 

  • R. Tousey, W.E. Austin, J.D. Purcell, K.G. Widing, The extreme ultraviolet emission from the Sun between the Lyman-alpha lines of H I and C VI. Ann. Astrophys. 28, 755 (1965)

    ADS  Google Scholar 

  • S. Tsuneta, K. Ichimoto, Y. Katsukawa, S. Nagata, M. Otsubo, T. Shimizu, Y. Suematsu, M. Nakagiri, M. Noguchi, T. Tarbell, A. Title, R. Shine, W. Rosenberg, C. Hoffmann, B. Jurcevich, G. Kushner, M. Levay, B. Lites, D. Elmore, T. Matsushita, N. Kawaguchi, H. Saito, I. Mikami, L.D. Hill, J.K. Owens, The solar optical telescope for the Hinode mission: An overview. Sol. Phys. 249, 167–196 (2008). doi:10.1007/s11207-008-9174-z

    Article  ADS  Google Scholar 

  • K. Tziotziou, Chromospheric cloud-model inversion techniques, in The Physics of Chromospheric Plasmas, ed. by P. Heinzel, I. Dorotovič, R.J. Rutten. Astronomical Society of the Pacific Conference Series, vol. 368 (2007), p. 217

  • K. Tziotziou, P. Heinzel, P. Mein, N. Mein, Non-LTE inversion of chromospheric Ca II cloud-like features. Astron. Astrophys. 366, 686–698 (2001). doi:10.1051/0004-6361:20000257

    Article  ADS  Google Scholar 

  • A.A. van Ballegooijen, Observations and modeling of a filament on the Sun. Astrophys. J. 612, 519–529 (2004). doi:10.1086/422512

    Article  ADS  Google Scholar 

  • J.E. Vernazza, R.W. Noyes, Inhomogeneous structure of the solar chromosphere from Lyman-continuum data. Sol. Phys. 22, 358–374 (1972). doi:10.1007/BF00148702

    Article  ADS  Google Scholar 

  • J.E. Vernazza, E.H. Avrett, R. Loeser, Structure of the solar chromosphere. III—Models of the EUV brightness components of the quiet-Sun. Astrophys. J. Suppl. Ser. 45, 635–725 (1981). doi:10.1086/190731

    Article  ADS  Google Scholar 

  • J.C. Vial, Optically thick lines in a quiescent prominence—Profiles of Lyman-alpha, Lyman-beta (H I), K and H (Mg II), and K and H (Ca II) lines with the OSO 8 LPSP instrument. Astrophys. J. 253, 330–352 (1982a). doi:10.1086/159639

    Article  ADS  Google Scholar 

  • J.C. Vial, Two-dimensional nonlocal thermodynamic equilibrium transfer computations of resonance lines in quiescent prominences. Astrophys. J. 254, 780–795 (1982b). doi:10.1086/159789

    Article  ADS  Google Scholar 

  • J.C. Vial, The prominence-corona interface, in IAU Colloq. 117: Dynamics of Quiescent Prominences, ed. by V. Ruzdjak, E. Tandberg-Hanssen. Lecture Notes in Physics, vol. 363 (Springer, Berlin, 1990), pp. 106–119

    Chapter  Google Scholar 

  • J.C. Vial, H. Ebadi, A. Ajabshirizadeh, The Ly α and Ly β profiles in solar prominences and prominence fine structure. Sol. Phys. 246, 327–338 (2007). doi:10.1007/s11207-007-9080-9

    Article  ADS  Google Scholar 

  • J.C. Vial, P. Lemaire, G. Artzner, P. Gouttebroze, O VI ( \(\lambda=1032~\AA\) ) profiles in and above an active region prominence, compared to quiet Sun center and limb profiles. Sol. Phys. 68, 187–206 (1980)

    Article  ADS  Google Scholar 

  • J.C. Vial, M. Rovira, J.M. Fontenla, P. Gouttebroze, Multi-thread structure as a possible solution for the L-beta problem in solar prominences, in IAU Colloq. 117: Dynamics of Quiescent Prominences, ed. by V. Ruzdjak, E. Tandberg-Hanssen. Lecture Notes in Physics, vol. 363 (Springer, Berlin, 1990), p. 282. doi:10.1007/BFb0025640

    Chapter  Google Scholar 

  • Y.M. Wang, The jetlike nature of HE II lambda304 prominences. Astrophys. J. 520, 71–74 (1999). doi:10.1086/312149

    Article  ADS  Google Scholar 

  • Y.M. Wang, On the relationship between He II λ304 prominences and the photospheric magnetic field. Astrophys. J. 560, 456–465 (2001). doi:10.1086/322495

    Article  ADS  Google Scholar 

  • K.G. Widing, U. Feldman, A.K. Bhatia, The extreme-ultraviolet spectrum (300–630  \(\AA\) ) of an erupting prominence observed from SKYLAB. Astrophys. J. 308, 982–992 (1986). doi:10.1086/164566

    Article  ADS  Google Scholar 

  • J.E. Wiik, P. Heinzel, B. Schmieder, Determination of plasma parameters in a quiescent prominence. Astron. Astrophys. 260, 419–430 (1992)

    ADS  Google Scholar 

  • J.E. Wiik, K. Dere, B. Schmieder, UV prominences observed with the HRTS: structure and physical properties. Astron. Astrophys. 273, 267 (1993)

    ADS  Google Scholar 

  • J.E. Wiik, B. Schmieder, T. Kucera, A. Poland, P. Brekke, G. Simnett, Eruptive prominence and associated CME observed with SUMER, CDS and LASCO (SOHO). Sol. Phys. 175, 411–436 (1997). doi:10.1023/A:1004925024794

    Article  ADS  Google Scholar 

  • J.E. Wiik, I.E. Dammasch, B. Schmieder, K. Wilhelm, Multiple-thread model of a prominence observed by SUMER and EIT on SOHO. Sol. Phys. 187, 405–426 (1999). doi:10.1023/A:1005151015043

    Article  ADS  Google Scholar 

  • K. Wilhelm, W. Curdt, E. Marsch, U. Schühle, P. Lemaire, A. Gabriel, J.C. Vial, M. Grewing, M.C.E. Huber, S.D. Jordan, A.I. Poland, R.J. Thomas, M. Kühne, J.G. Timothy, D.M. Hassler, O.H.W. Siegmund, SUMER—Solar Ultraviolet Measurements of Emitted Radiation. Sol. Phys. 162, 189–231 (1995). doi:10.1007/BF00733430

    Article  ADS  Google Scholar 

  • B.E. Woodgate, J.C. Brandt, M.W. Kalet, P.J. Kenny, E.A. Tandberg-Hanssen, E.C. Bruner, J.M. Beckers, W. Henze, E.D. Knox, C.L. Hyder, The ultraviolet spectrometer and polarimeter on the solar maximum mission. Sol. Phys. 65, 73–90 (1980). doi:10.1007/BF00151385

    Article  ADS  Google Scholar 

  • N.A. Yakovkin, M.Y. Zel’dina, Excitation and ionization of hydrogen in prominences. Soviet Astron. 8, 262 (1964)

    ADS  Google Scholar 

  • N.A. Yakovkin, M.Y. Zel’dina, The Lyman-α radiation field in a chromospheric filament. Soviet Astron. 12, 40 (1968)

    ADS  Google Scholar 

  • N.A. Yakovkin, M.Y. Zeldina, C. Lhagvazhav, Helium radiation diffusion in prominences. Sol. Phys. 81, 339–354 (1982)

    Article  ADS  Google Scholar 

  • Q.Z. Zhang, C. Fang, Semi-empirical models of a quiescent prominence. Astron. Astrophys. 175, 277–281 (1987)

    ADS  Google Scholar 

  • V.V. Zharkova, Toward hydrogen emission in filamentary quiescent prominences. Hvar Obs. Bull. 13, 331 (1989)

    ADS  Google Scholar 

  • H. Zirin, Production of a short-lived filament by a surge. Sol. Phys. 50, 399–404 (1976). doi:10.1007/BF00155302

    Article  ADS  Google Scholar 

  • J.B. Zirker, Prominence hydrogen lines at 10–20 microns. Sol. Phys. 102, 33–40 (1985). doi:10.1007/BF00154035

    Article  ADS  Google Scholar 

  • J.B. Zirker, S. Koutchmy, Prominence fine structure. II—Diagnostics. Sol. Phys. 131, 107–118 (1991). doi:10.1007/BF00151747

    Article  ADS  Google Scholar 

  • J.B. Zirker, O. Engvold, S.F. Martin, Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature 396, 440 (1998). doi:10.1038/24798

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Labrosse.

Additional information

S. Parenti now at Institut d’Astrophysique Spatiale, Université Paris XI/CNRS, 91405 Orsay Cedex, France.

G. Kilper now at NASA/GSFC, Code 671, Greenbelt, MD 20771, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labrosse, N., Heinzel, P., Vial, JC. et al. Physics of Solar Prominences: I—Spectral Diagnostics and Non-LTE Modelling. Space Sci Rev 151, 243–332 (2010). https://doi.org/10.1007/s11214-010-9630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-010-9630-6

Keywords

Navigation