Skip to main content
Log in

A Geoeffective CME Caused by the Eruption of a Quiescent Prominence on 29 September 2013

  • Published:
Solar Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The eruption of a large prominence that occurred away of active regions in the SOL2013-09-29 event produced a fast coronal mass ejection (CME) and a shock wave. The event caused considerable geospace disturbances, including a proton enhancement that have been addressed in previous studies. Continuing with the analysis of this event, we focus on the development of the CME and shock wave, assess an expected geospace impact using simplest considerations, and compare the expectations with in situ measurements near Earth. The high CME speed in this non-flare-associated event was determined by a considerable reconnected flux that corresponds to a pattern established by different authors. Estimations based on a few approaches showed the reconnection flux in this event to be comparable with a typical value in flare-associated eruptions. The shock wave was most likely impulsively excited by the erupting prominence in the same way as in flare-associated events and changed to the bow-shock regime later. The trajectory calculated for this scenario reproduces the Type II emission observed from 30 MHz to 70 kHz; its interruptions were probably caused by propagation effects. Properties of the near-Earth proton enhancement are discussed considering the results of recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Afanasyev, A.N., Uralov, A.M., Grechnev, V.V.: 2013, Propagation of a fast magnetoacoustic shock wave in the magnetosphere of an active region. Astron. Rep.57, 594. DOI . ADS .

    Article  ADS  Google Scholar 

  • Al-Hamadani, F., Pohjolainen, S., Valtonen, E.: 2017, Origin of radio enhancements in Type II bursts in the outer corona. Solar Phys.292(9), 127. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2004, Physics of the Solar Corona. An Introduction, Praxis Publishing Ltd., Chichester. Chapter 12. ADS .

    Google Scholar 

  • Bogachev, S.A., Somov, B.V.: 2005, Comparison of the Fermi and betatron acceleration efficiencies in collapsing magnetic traps. Astron. Lett.31(8), 537. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bogachev, S.A., Somov, B.V.: 2009, Effect of Coulomb collisions on the particle acceleration in collapsing magnetic traps. Astron. Lett.35(1), 57. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bothmer, V., Mrotzek, N.: 2017, Comparison of CME and ICME structures derived from remote-sensing and in situ observations. Solar Phys.292(11), 157. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The radio and plasma wave investigation on the Wind spacecraft. Space Sci. Rev.71(1-4), 231. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bougeret, J.L., Goetz, K., Kaiser, M.L., Bale, S.D., Kellogg, P.J., Maksimovic, M., Monge, N., Monson, S.J., Astier, P.L., Davy, S., et al.: 2008, S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci. Rev.136, 487. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cane, H.V., Erickson, W.C.: 2005, Solar Type II radio bursts and IP Type II events. Astrophys. J.623(2), 1180. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, J., Krall, J.: 2003, Acceleration of coronal mass ejections. J. Geophys. Res. Space Phys.108, 1410. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chertok, I.M., Grechnev, V.V., Abunin, A.A.: 2017, An early diagnostics of the geoeffectiveness of solar eruptions from photospheric magnetic flux observations: The transition from SOHO to SDO. Solar Phys.292, 62. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chertok, I.M., Grechnev, V.V., Meshalkina, N.S.: 2009, On the correlation between spectra of solar microwave bursts and proton fluxes near the Earth. Astron. Rep.53(11), 1059. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chertok, I.M., Grechnev, V.V., Uralov, A.M.: 2009, Large-scale phenomena on the Sun associated with the eruption of filaments outside active regions: The event of September 12, 1999. Astron. Rep.53(4), 355. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chertok, I.M., Grechnev, V.V., Belov, A.V., Abunin, A.A.: 2013, Magnetic flux of EUV arcade and dimming regions as a relevant parameter for early diagnostics of solar eruptions – Sources of non-recurrent geomagnetic storms and Forbush decreases. Solar Phys.282(1), 175. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chertok, I.M., Abunina, M.A., Abunin, A.A., Belov, A.V., Grechnev, V.V.: 2015, Relationship between the magnetic flux of solar eruptions and the Ap index of geomagnetic storms. Solar Phys.290(2), 627. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cliver, E.W.: 2016, Flare vs. shock acceleration of high-energy protons in solar energetic particle events. Astrophys. J.832(2), 128. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cliver, E.W., Kahler, S.W., Kazachenko, M., Shimojo, M.: 2019, The disappearing solar filament of 2013 September 29 and its large associated proton event: Implications for particle acceleration at the Sun. Astrophys. J.877(1), 11. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P.: 2010, Interaction of ICMEs with the solar wind. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, Am. Inst. Phys. Conf. Ser.1216, 329. DOI . ADS .

    Chapter  Google Scholar 

  • Ding, L.-G., Jiang, Y., Li, G.: 2016, Are there two distinct solar energetic particle releases in the 2012 May 17 ground level enhancement event? Astrophys. J.818(2), 169. DOI . ADS .

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys.162, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fainshtein, V.G., Egorov, Y.I.: 2019, Onset of a CME-related shock within the Large-Angle Spectrometric Coronagraph (LASCO) field of view. Solar Phys.294(9), 126. DOI . ADS .

    Article  ADS  Google Scholar 

  • Filippov, B.P., Gopalswamy, N., Lozhechkin, A.V.: 2001, Non-radial motion of eruptive filaments. Solar Phys.203, 119. DOI . ADS .

    Article  ADS  Google Scholar 

  • Filippov, B.P., Gopalswamy, N., Lozhechkin, A.V.: 2002, Motion of an eruptive prominence in the solar corona. Astron. Rep.46, 417. DOI . ADS .

    Article  ADS  Google Scholar 

  • Filippov, B., Koutchmy, S.: 2008, Causal relationships between eruptive prominences and coronal mass ejections. Ann. Geophys.26, 3025. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fletcher, L., Hudson, H.: 2001, The magnetic structure and generation of EUV flare ribbons. Solar Phys.204, 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Glesener, L., Krucker, S., Bain, H.M., Lin, R.P.: 2013, Observation of heating by flare-accelerated electrons in a solar coronal mass ejection. Astrophys. J. Lett.779, L29. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gloeckler, G., Geiss, J., Balsiger, H., Bedini, P., Cain, J.C., Fischer, J., Fisk, L.A., Galvin, A.B., Gliem, F., Hamilton, D.C., et al.: 1992, The Solar Wind Ion Composition Spectrometer. Astron. Astrophys. Suppl. Ser.92(2), 267. ADS .

    ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Akiyama, S., Yashiro, S., Xie, H., Thakur, N., Kahler, S.W.: 2015, Large solar energetic particle events associated with filament eruptions outside of active regions. Astrophys. J.806(1), 8. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Akiyama, S., Xie, H.: 2017, Estimation of reconnection flux using post-eruption arcades and its relevance to magnetic clouds at 1 AU. Solar Phys.292(4), 65. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Zandanov, V.G., Baranov, N.Y., Shibasaki, K.: 2006, Observations of prominence eruptions with two radioheliographs, SSRT, and NoRH. Publ. Astron. Soc. Japan58, 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Slemzin, V.A., Chertok, I.M., Kuzmenko, I.V., Shibasaki, K.: 2008, Absorption phenomena and a probable blast wave in the 13 July 2004 eruptive event. Solar Phys.253(1-2), 263. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Chertok, I.M., Kuzmenko, I.V., Afanasyev, A.N., Meshalkina, N.S., Kalashnikov, S.S., Kubo, Y.: 2011, Coronal shock waves, EUV waves, and their relation to CMEs. I. Reconciliation of “EIT waves”, Type II radio bursts, and leading edges of CMEs. Solar Phys.273, 433. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Meshalkina, N.S., Chertok, I.M., Kiselev, V.I.: 2013, Relations between strong high-frequency microwave bursts and proton events. Publ. Astron. Soc. Japan65, S4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Chertok, I.M., Slemzin, V.A., Filippov, B.P., Egorov, Y.I., Fainshtein, V.G., Afanasyev, A.N., Prestage, N.P., Temmer, M.: 2014, A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. II. CMEs, shock waves, and drifting radio bursts. Solar Phys.289, 1279. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Meshalkina, N.S., Chertok, I.M.: 2015a, Relations between microwave bursts and near-Earth high-energy proton enhancements and their origin. Solar Phys.290(10), 2827. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Kuzmenko, I.V., Kochanov, A.A., Chertok, I.M., Kalashnikov, S.S.: 2015b, Responsibility of a filament eruption for the initiation of a flare, CME, and blast wave, and its possible transformation into a bow shock. Solar Phys.290, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Kochanov, A.A., Kuzmenko, I.V., Prosovetsky, D.V., Egorov, Y.I., Fainshtein, V.G., Kashapova, L.K.: 2016, A tiny eruptive filament as a flux-rope progenitor and driver of a large-scale CME and wave. Solar Phys.291, 1173. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Uralov, A.M., Klein, K.-L., Kochanov, A.A.: 2017, The 26 December 2001 solar eruptive event responsible for GLE63: III. CME, shock waves, and energetic particles. Solar Phys.292, 102. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Lesovoi, S.V., Kochanov, A.A., Uralov, A.M., Altyntsev, A.T., Gubin, A.V., Zhdanov, D.A., Ivanov, E.F., Smolkov, G.Y., Kashapova, L.K.: 2018, Multi-instrument view on solar eruptive events observed with the Siberian Radioheliograph: From detection of small jets up to development of a shock wave and CME. J. Atmos. Solar-Terr. Phys.174, 46. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kochanov, A.A., Uralov, A.M., Slemzin, V.A., Rodkin, D.G., Goryaev, F.F., Kiselev, V.I., Myshyakov, I.I.: 2019, Development of a fast CME and properties of a related interplanetary transient. Solar Phys.294(10), 139. DOI . ADS .

    Article  ADS  Google Scholar 

  • Guidice, D.A.: 1979, Sagamore Hill Radio Observatory, Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts 01731. Report. Bull. Am. Astron. Soc.11, 311. ADS .

    ADS  Google Scholar 

  • Guidice, D.A., Cliver, E.W., Barron, W.R., Kahler, S.: 1981, The air force RSTN system. Bull. Am. Astron. Soc.13, 553. ADS .

    ADS  Google Scholar 

  • Holman, G.D., Foord, A.: 2015, Direct spatial association of an X-ray flare with the eruption of a solar quiescent filament. Astrophys. J.804(2), 108. DOI . ADS .

    Article  ADS  Google Scholar 

  • Inhester, B., Birn, J., Hesse, M.: 1992, The evolution of line tied coronal arcades including a converging footpoint motion. Solar Phys.138(2), 257. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kahler, S.W., Kazachenko, M., Lynch, B.J., Welsch, B.T.: 2017, Flare magnetic reconnection fluxes as possible signatures of flare contributions to gradual SEP events. In: J. Phys. Conf. Ser.900, 012011. DOI . ADS .

    Chapter  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev.136, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kallenrode, M.-B.: 2003, Current views on impulsive and gradual solar energetic particle events. J. Phys. G, Nucl. Phys.29, 965. ADS .

    Article  ADS  Google Scholar 

  • Klein, K.-L., Trottet, G.: 2001, The origin of solar energetic particle events: Coronal acceleration versus shock wave acceleration. Space Sci. Rev.95, 215. ADS .

    Article  ADS  Google Scholar 

  • Knock, S.A., Cairns, I.H.: 2005, Type II radio emission predictions: Sources of coronal and interplanetary spectral structure. J. Geophys. Res. Space Phys.110(A1), A01101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kocharov, L., Pohjolainen, S., Mishev, A., Reiner, M.J., Lee, J., Laitinen, T., Didkovsky, L.V., Pizzo, V.J., Kim, R., Klassen, A., Karlicky, M., Cho, K.-S., Gary, D.E., Usoskin, I., Valtonen, E., Vainio, R.: 2017, Investigating the origins of two extreme solar particle events: Proton source profile and associated electromagnetic emissions. Astrophys. J.839(2), 79. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kuzmenko, I.V., Grechnev, V.V.: 2017, Development and parameters of a non-self-similar CME caused by the eruption of a quiescent prominence. Solar Phys.292, 143. DOI .

    Article  ADS  Google Scholar 

  • Kwon, R.-Y., Zhang, J., Olmedo, O.: 2014, New insights into the physical nature of coronal mass ejections and associated shock waves within the framework of the three-dimensional structure. Astrophys. J.794, 148. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kwon, R.-Y., Zhang, J., Vourlidas, A.: 2015, Are halo-like solar coronal mass ejections merely a matter of geometric projection effects? Astrophys. J. Lett.799, L29. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys.275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Li, T., Zhang, J., Ji, H.: 2015, Filament activation in response to magnetic flux emergence and cancellation in filament channels. Solar Phys.290(6), 1687. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager. Solar Phys.279(1), 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Logachev, Y.I., Bazilevskaya, G.A., Vashenyuk, E.V., Daibog, E.I., Ishkov, V.N., Lazutin, L.L., Miroshnichenko, L.I., Nazarova, M.N., Petrenko, I.E., Stupishin, A.G., Surova, G.M., Yakovchuk, O.S.: 2016, Catalogue of Solar Proton Events in the 23rd Cycle of Solar Activity, Geophysical Center RAS, Moscow. DOI . www.gcras.ru/eng/ .

    Book  Google Scholar 

  • Longcope, D.W., Beveridge, C.: 2007, A quantitative, topological model of reconnection and flux rope formation in a two-ribbon flare. Astrophys. J.669(1), 621. DOI . ADS .

    Article  ADS  Google Scholar 

  • MacQueen, R.M., Fisher, R.R.: 1983, The kinematics of solar inner coronal transients. Solar Phys.89(1), 89. DOI . ADS .

    Article  ADS  Google Scholar 

  • Manchester, W., Kilpua, E.K.J., Liu, Y.D., Lugaz, N., Riley, P., Török, T., Vršnak, B.: 2017, The physical processes of CME/ICME evolution. Space Sci. Rev.212, 1159. DOI . ADS .

    Article  ADS  Google Scholar 

  • Masson, S., Antiochos, S.K., DeVore, C.R.: 2013, A model for the escape of solar-flare-accelerated particles. Astrophys. J.771, 82. DOI . ADS .

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci. Rev.86, 563. DOI . ADS .

    Article  ADS  Google Scholar 

  • Metcalf, T.R., Alexander, D.: 1999, Coronal trapping of energetic flare particles: Yohkoh/HXT observations. Astrophys. J.522, 1108. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mewaldt, R.A., Looper, M.D., Cohen, C.M.S., Haggerty, D.K., Labrador, A.W., Leske, R.A., Mason, G.M., Mazur, J.E., von Rosenvinge, T.T.: 2012, Energy spectra, composition, and other properties of ground-level events during Solar Cycle 23. Space Sci. Rev.171(1 – 4), 97. DOI . ADS .

    Article  ADS  Google Scholar 

  • Miklenic, C.H., Veronig, A.M., Vršnak, B.: 2009, Temporal comparison of nonthermal flare emission and magnetic-flux change rates. Astron. Astrophys.499(3), 893. DOI . ADS .

    Article  ADS  Google Scholar 

  • Paassilta, M., Raukunen, O., Vainio, R., Valtonen, E., Papaioannou, A., Siipola, R., Riihonen, E., Dierckxsens, M., Crosby, N., Malandraki, O., Heber, B., Klein, K.-L.: 2017, Catalogue of 55 – 80 MeV solar proton events extending through Solar Cycles 23 and 24. J. Space Weather Space Clim.7, A14. DOI . ADS .

    Article  ADS  Google Scholar 

  • Paassilta, M., Papaioannou, A., Dresing, N., Vainio, R., Valtonen, E., Heber, B.: 2018, Catalogue of \(> 55~\mbox{MeV}\) wide-longitude solar proton events observed by SOHO, ACE, and the STEREOs at \(\approx1~\mbox{AU}\) during 2009 – 2016. Solar Phys.293(4), 70. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pal, S., Nandy, D., Srivastava, N., Gopalswamy, N., Panda, S.: 2018, Dependence of coronal mass ejection properties on their solar source active region characteristics and associated flare reconnection flux. Astrophys. J.865(1), 4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Palacios, J., Cid, C., Guerrero, A., Saiz, E., Cerrato, Y.: 2015, Supergranular-scale magnetic flux emergence beneath an unstable filament. Astron. Astrophys.583, A47. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pohjolainen, S., Hori, K., Sakurai, T.: 2008, Radio bursts associated with flare and ejecta in the 13 July 2004 event. Solar Phys.253(1-2), 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Prestage, N.P., Luckhurst, R.G., Paterson, B.R., Bevins, C.S., Yuile, C.G.: 1994, A new radio spectrograph at Culgoora. Solar Phys.150(1 – 2), 393. DOI . ADS .

    Article  ADS  Google Scholar 

  • Qiu, J., Yurchyshyn, V.B.: 2005, Magnetic reconnection flux and coronal mass ejection velocity. Astrophys. J. Lett.634(1), L121. DOI . ADS .

    Article  ADS  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J.659, 758. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2009, Solar release times of energetic particles in ground-level events. Astrophys. J.693(1), 812. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev.175, 53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reiner, M.J., Vourlidas, A., Cyr, O.C.S., Burkepile, J.T., Howard, R.A., Kaiser, M.L., Prestage, N.P., Bougeret, J.-L.: 2003, Constraints on coronal mass ejection dynamics from simultaneous radio and white-light observations. Astrophys. J.590(1), 533. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys.264, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rouillard, A.P., Plotnikov, I., Pinto, R.F., Tirole, M., Lavarra, M., Zucca, P., Vainio, R., Tylka, A.J., Vourlidas, A., De Rosa, M.L., et al.: 2016, Deriving the properties of coronal pressure fronts in 3D: Application to the 2012 May 17 ground level enhancement. Astrophys. J.833, 45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Saito, K., Makita, M., Nishi, K., Hata, S.: 1970, A non-spherical axisymmetric model of the solar K corona of the minimum type. Ann. Tokyo Astron. Obs.12, 53. ADS .

    ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., et al.: 1995, The Solar Oscillations Investigation – Michelson Doppler Imager. Solar Phys.162(1 – 2), 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., et al.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys.275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev.86, 613. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The Advanced Composition Explorer. Space Sci. Rev.86, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Švestka, Z.: 2001, Varieties of coronal mass ejections and their relation to flares. Space Sci. Rev.95, 135. ADS .

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A.M., Vršnak, B., Rybák, J., Gömöry, P., Stoiser, S., Maričić, D.: 2008, Acceleration in fast halo CMEs and synchronized flare HXR bursts. Astrophys. J. Lett.673(1), L95. DOI . ADS .

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A.M., Kontar, E.P., Krucker, S., Vršnak, B.: 2010, Combined STEREO/RHESSI study of coronal mass ejection acceleration and particle acceleration in solar flares. Astrophys. J.712(2), 1410. DOI . ADS .

    Article  ADS  Google Scholar 

  • Uralov, A.M., Lesovoi, S.V., Zandanov, V.G., Grechnev, V.V.: 2002, Dual-filament initiation of a coronal mass ejection: Observations and model. Solar Phys.208(1), 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Uralova, S.V., Uralov, A.M.: 1994, WKB approach to the problem of magnetohydrodynamic shock propagation through the heliospheric current sheet. Solar Phys.152(2), 457. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2008, Processes and mechanisms governing the initiation and propagation of CMEs. Ann. Geophys.26(10), 3089. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2016, Solar eruptions: The CME-flare relationship. Astron. Nachr.337(10), 1002. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Cliver, E.W.: 2008, Origin of coronal shock waves. Invited review. Solar Phys.253, 215. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wood, B.E., Lean, J.L., McDonald, S.E., Wang, Y.-M.: 2016, Comparative ionospheric impacts and solar origins of nine strong geomagnetic storms in 2010 – 2015. J. Geophys. Res.121(6), 4938. DOI . ADS .

    Article  Google Scholar 

  • Xu, Z.G., Li, C., Ding, M.D.: 2017, Observations of a coronal shock wave and the production of solar energetic particles. Astrophys. J.840(1), 38. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. Space Phys.109, A07105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Y.: 2012, Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res. Space Phys.117, A00L07. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J.559, 452. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A.K. Kochanov, A.M. Uralov, A.V. Belov, and I.M. Chertok for their assistance and fruitful discussions. We thank the anonymous reviewer for valuable remarks.

V. Grechnev (Sections 3.3, 4.3, 5, and 6) was funded by the Russian Science Foundation under grant 18-12-00172; the development of the methods used in Sections 3.3 and 6.2 was supported by the Program of Basic Research of the RAS Presidium No. 28. I. Kuzmenko (Sections 2, 3.1, 3.2, 4.1, and 4.2) was supported by the Russian State Contract No. 075-00389-19-00.

We appreciate the NASA/SDO and the AIA and HMI science teams; the NASA’s STEREO/SECCHI science and instrument teams; the teams operating LASCO on SOHO, STEREO/WAVES, Wind/WAVES, the GOES satellites, and the Space Weather Services Culgoora Solar Observatory for the data used here. SOHO is a project of international cooperation between ESA and NASA. We thank the ACE SWEPAM, SWICS, and MAG instrument teams and the ACE Science Center for providing the ACE data. We are grateful to the team maintaining the CME Catalogs at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Grechnev.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MPG 2.9 MB)

(MPG 2.9 MB)

(MPG 2.5 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grechnev, V.V., Kuzmenko, I.V. A Geoeffective CME Caused by the Eruption of a Quiescent Prominence on 29 September 2013. Sol Phys 295, 55 (2020). https://doi.org/10.1007/s11207-020-01619-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01619-x

Keywords

Navigation