Skip to main content
Log in

Estimation of Reconnection Flux Using Post-eruption Arcades and Its Relevance to Magnetic Clouds at 1 AU

  • Earth-affecting Solar Transients
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We report on a new method to compute the flare reconnection (RC) flux from post-eruption arcades (PEAs) and the underlying photospheric magnetic fields. In previous works, the RC flux has been computed using the cumulative flare ribbon area. Here we obtain the RC flux as the flux in half of the area underlying the PEA in EUV imaged after the flare maximum. We apply this method to a set of 21 eruptions that originated near the solar disk center in Solar Cycle 23. We find that the RC flux from the arcade method (\(\Phi_{\mathrm{rA}}\)) has excellent agreement with the flux from the flare-ribbon method (\(\Phi_{\mathrm{rR}}\)) according to \(\Phi_{\mathrm{rA}} = 1.24(\Phi_{\mathrm{rR}})^{0.99}\). We also find \(\Phi_{\mathrm{rA}}\) to be correlated with the poloidal flux (\(\Phi_{\mathrm{P}}\)) of the associated magnetic cloud at 1 AU: \(\Phi_{\mathrm{P}} = 1.20(\Phi_{\mathrm{rA}})^{0.85}\). This relation is nearly identical to that obtained by Qiu et al. (Astrophys. J. 659, 758, 2007) using a set of only 9 eruptions. Our result supports the idea that flare reconnection results in the formation of the flux rope and PEA as a common process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aschwanden, M.J., Alexander, D.: 2001, Flare plasma cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille Day Event (14 July 2000). Solar Phys. 204, 91. DOI .

    Article  ADS  Google Scholar 

  • Baker, D.N., Pulkkinen, T.I., Li, X., Kanekal, S.G., Blake, J.B., Selesnick, R.S., et al.: 1998, A strong CME-related magnetic cloud interaction with the Earth’s Magnetosphere: ISTP observations of rapid relativistic electron acceleration on May 15, 1997. Geophys. Res. Lett. 29, 2975. DOI .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI .

    Article  ADS  Google Scholar 

  • Delaboudiniére, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., et al.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI .

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys. 162, 1. DOI .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Fan, Y., Török, T., Kliem, B.: 2006, The evolving sigmoid: Evidence for magnetic flux ropes in the corona before, during, and after CMEs. Space Sci. Rev. 124, 131. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2009, Coronal mass ejections and space weather. In: Tsuda, T., Fujii, R., Shibata, K., Geller, M.A. (eds.) Climate and Weather of the Sun Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium, Terrapub, Tokyo, 77.

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Akiyama, S.: 2006, Coronal mass ejections and space weather due to extreme events. In: Gopalswamy, N., Bhattacharyya, A. (eds.) Solar Influence on the Heliosphere and Earth’s Environment: Recent Progress and Prospects, Quest Publications, Mumbai, 79.

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Krucker, S., Stenborg, G., Howard, R.A.: 2004, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, A12105. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Liu, Y., Michalek, G., Vourlidas, A., Kaiser, M.L., Howard, R.A.: 2005, Coronal mass ejections and other extreme characteristics of the 2003 October–November solar eruptions. J. Geophys. Res. 110, A09S15. DOI .

    Google Scholar 

  • Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2010, Interplanetary shocks lacking type II radio bursts. Astrophys. J. 710, 1111. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., Usoskin, I.G.: 2012, Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev. 171, 23. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Akiyama, S., Xie, H., Yashiro, S., Reinard, A.A.: 2013a, The solar connection of enhanced heavy ion charge states in the interplanetary medium: Implications for the flux-rope structure of CMEs. Solar Phys. 284, 17. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Nieves-Chinchilla, T., Hidalgo, M., Zhang, J., Riley, P., van Driel-Gesztelyi, L., Mandrini, C.H.: 2013b, Preface Solar Phys. 284, 1. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Mäkelä, P.: 2015, Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J. Geophys. Res. 120, 9221. DOI .

    Article  Google Scholar 

  • Hanaoka, Y., Kurokawa, H., Enome, S., Nakajima, H., Shibasaki, K., Nishio, M., et al.: 1994, Simultaneous observations of a prominence eruption followed by a coronal arcade formation in radio, soft X-rays, and H(alpha). Publ. Astron. Soc. Japan 46, 205.

    ADS  Google Scholar 

  • Hu, Q., Qiu, J., Dasgupta, B., Khare, A., Webb, G.M.: 2014, Structures of interplanetary magnetic flux ropes and comparison with their solar sources. Astrophys. J. 793, 53. DOI .

    Article  ADS  Google Scholar 

  • Leamon, R.J., Canfield, R.C., Jones, S.L., Lambkin, K., Lundberg, B.J., Pevtsov, A.A.: 2004, Helicity of magnetic clouds and their associated active regions. J. Geophys. Res. 109, A05106. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. DOI .

    Article  ADS  Google Scholar 

  • Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., Richardson, I.G., Cane, H.V., Gloeckler, G.: 2001, Iron charge state distributions as an identifier of interplanetary coronal mass ejections. J. Geophys. Res. 106, 29231. DOI .

    Article  ADS  Google Scholar 

  • Lin, J., Raymond, J.C., van Ballegooijen, A.A.: 2004, The role of magnetic reconnection in the observable features of solar eruptions. Astrophys. J. 602, 422. DOI .

    Article  ADS  Google Scholar 

  • Linton, M.G., Moldwin, M.B.: 2009, A comparison of the formation and evolution of magnetic flux ropes in solar coronal mass ejections and magnetotail plasmoids. J. Geophys. Res. 114, A00B09. DOI .

    Article  ADS  Google Scholar 

  • Longcope, D.W., Beveridge, C.: 2007, Quantitative, topological model of reconnection and flux rope formation in a two-ribbon flare. Astrophys. J. 669, 621. DOI .

    Article  ADS  Google Scholar 

  • Longcope, D., Beveridge, C., Qiu, J., Ravindra, B., Barnes, G., Dasso, S.: 2007, Modeling and measuring the flux reconnected and ejected by the two-ribbon flare/CME event on 7 November 2004. Solar Phys. 244, 45. DOI .

    Article  ADS  Google Scholar 

  • Mäkelä, P., Gopalswamy, N., Xie, H., Mohamed, A.A., Akiyama, S., Yashiro, S.: 2013, Coronal hole influence on the observed structure of interplanetary CMEs. Solar Phys. 284, 59. DOI .

    Article  ADS  Google Scholar 

  • Marubashi, K.: 1997, Interplanetary magnetic flux ropes and solar filaments. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophysical Monograph Series 99, American Geophysical Union, Washington DC, 147. DOI .

    Google Scholar 

  • Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.-S., Park, Y.-D.: 2015, Geometrical relationship between interplanetary flux ropes and their solar sources. Solar Phys. 290, 137. DOI .

    Article  Google Scholar 

  • Mewaldt, R.A., Looper, M.D., Cohen, C.M.S., Haggerty, D.K., Labrador, A.W., Leske, R.A., Mason, G.M., Mazur, J.E., von Rosenvinge, T.T., et al.: 2012, Energy spectra, composition, and other properties of ground-level events during solar cycle 23. Space Sci. Rev. 171, 97. DOI .

    Article  ADS  Google Scholar 

  • Moore, R.L., Sterling, A.C., Suess, S.T.: 2007, The width of a solar coronal mass ejection and the source of the driving magnetic explosion: A test of the standard scenario for CME production. Astrophys. J. 668, 1221. DOI .

    Article  ADS  Google Scholar 

  • Mouschovias, T.Ch., Poland, A.I.: 1978, Expansion and broadening of coronal loop transients – a theoretical explanation. Astrophys. J. 220, 675. DOI .

    Article  ADS  Google Scholar 

  • Nakai, Y., Hattori, A.: 1985, Domeless solar tower telescope at the Hida Observatory. Mem. Fac. Sci., Kyoto Univ. 36(3), 385.

    Google Scholar 

  • Nindos, A., Zhang, J., Zhang, H.: 2003, The magnetic helicity budget of solar active regions and coronal mass ejections. Astrophys. J. 594, 1033. DOI .

    Article  ADS  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758. DOI .

    Article  ADS  Google Scholar 

  • Reinard, A.A.: 2008, analysis of interplanetary coronal mass ejection parameters as a function of energetics, source location, and magnetic structure. Astrophys. J. 682, 1289. DOI .

    Article  ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Karlický, M., Jiřička, K., Bougeret, J.-L.: 2001, Bastille day event: A radio perspective. Solar Phys. 204, 121. DOI .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129. DOI .

    Article  ADS  Google Scholar 

  • Strong, K., Bruner, M., Tarbell, T., Title, A., Wolfson, C.J.: 1994, Trace – the transition region and coronal explorer. Space Sci. Rev. 70, 119. DOI .

    Article  ADS  Google Scholar 

  • Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 24, 2465. DOI .

    Article  ADS  Google Scholar 

  • Titov, V.S., Mikic, Z., Linker, J.A., Lionello, R.: 2008, 1997 May 12 coronal mass ejection event. I. A simplified model of the preeruptive magnetic structure. Astrophys. J. 675, 1614. DOI .

    Article  ADS  Google Scholar 

  • Webb, D.F., Lepping, R.P., Burlaga, L.F., DeForest, C.E., Larson, D.E., Martin, E.F., Plunkett, S.F., Rust, D.M.: 2000, The origin and development of the May 1997 magnetic cloud. J. Geophys. Res. 105, 27251. DOI .

    Article  ADS  Google Scholar 

  • Xie, H., Gopalswamy, N., St. Cyr, O.C.: 2013, Near-Sun flux rope structure of CMEs. Solar Phys. 284, 47. DOI .

    Article  ADS  Google Scholar 

  • Yan, Y., Huang, G.: 2003, Reconstructed 3-d magnetic field structure and hard X-ray two ribbons for 2000 Bastille-day event. Space Sci. Rev. 107, 111. DOI .

    Article  ADS  Google Scholar 

  • Yashiro, S., Michalek, G., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2008, Spatial relationship between solar flares and coronal mass ejections. Astrophys. J. 673, 1174. DOI .

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Mäkelä, P., Akiyama, S.: 2013, Post-eruption arcades and interplanetary coronal mass ejections. Solar Phys. 284, 5. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P.: 2006, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649, 1100. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J. 559, 452. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., et al.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathit{Dst} < = - 100~\mbox{nT}\)) during 1996–2005. J. Geophys. Res. 112, A10102. DOI .

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the ACE, Wind and SOHO teams for providing the data on line. SOHO is a project of international collaboration between ESA and NASA. We thank C. Möstl for providing the poloidal flux of 13 magnetic clouds using the Grad–Shafranov method. Our work was supported by NASA’s Living with a Star Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gopalswamy.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Earth-affecting Solar Transients

Guest Editors: Jie Zhang, Xochitl Blanco-Cano, Nariaki Nitta, and Nandita Srivastava

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalswamy, N., Yashiro, S., Akiyama, S. et al. Estimation of Reconnection Flux Using Post-eruption Arcades and Its Relevance to Magnetic Clouds at 1 AU. Sol Phys 292, 65 (2017). https://doi.org/10.1007/s11207-017-1080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1080-9

Keywords

Navigation