Skip to main content
Log in

Meteospace, a New Instrument for Solar Survey at the Calern Observatory

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

High-cadence observations of solar activity (active regions, flares, filaments) in the H\(\alpha\) line were performed at Meudon and Haute Provence Observatories from 1956 to 2004. More than 7 million images were recorded, mainly on 35 mm films. After a review of the scientific interest of solar surveys at high temporal resolution and the historical background, we describe the new instrument which will operate automatically in 2020 at the Calern station of the Côte d’Azur observatory (1270 m). It will replace the former heliographs with improved cadence, seeing and time coverage. We summarize the capabilities of the optical design and present new scientific perspectives in terms of flare onset and Moreton wave detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Amari, T., Luciani, J.F.: 1999, Confined disruption of a three-dimensional twisted magnetic flux tube. Astrophys. J. Lett.515(2), L81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J.510, 485. DOI . ADS .

    Article  ADS  Google Scholar 

  • Asai, A., Yokoyama, T., Shimojo, M., Masuda, S., Kurokawa, H., Shibata, K.: 2004, Flare ribbon expansion and energy release rate. Astrophys. J.611(1), 557. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aulanier, G., Démoulin, P.: 1998, 3-D magnetic configurations supporting prominences. I. The natural presence of lateral feet. Astron. Astrophys.329, 1125. ADS .

    ADS  Google Scholar 

  • Carmichael, H.: 1964, A process for flares. NASA Spec. Publ.50, 451. ADS .

    ADS  Google Scholar 

  • Dalmasse, K., Chandra, R., Schmieder, B., Aulanier, G.: 2015, Can we explain atypical solar flares? Astron. Astrophys.574, A37. DOI . ADS .

    Article  ADS  Google Scholar 

  • Delbouille, L., Roland, G., Neven, L.: 1973, Atlas Photométrique du Spectre Solaire de [lambda] 3000 à [lambda] 10000, Université de Liège. ADS .

    Google Scholar 

  • Demarcq, J., Olivieri, G., Fruteau de Laclos, M., Marteaud, M., Nicolas, M., Roussel, R.: 1985, A new instrument for solar observations. L’Astronomie99, 557. ADS .

    ADS  Google Scholar 

  • Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev.159, 19. DOI . ADS .

    Article  ADS  Google Scholar 

  • Forbes, T.G., Priest, E.R.: 1984, Numerical simulation of reconnection in an emerging magnetic flux region. Solar Phys.94(2), 315. DOI . ADS .

    Article  ADS  Google Scholar 

  • Furth, H.P., Killeen, J., Rosenbluth, M.N.: 1963, Finite-resistivity instabilities of a sheet pinch. Phys. Fluids6(4), 459. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gallagher, P.T., Denker, C., Yurchyshyn, V., Spirock, T., Qiu, J., Wang, H., Goode, P.R.: 2002, Solar activity monitoring and forecasting capabilities at big bear solar observatory. Ann. Geophys.20, 1105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grenat, H., Laborde, G.: 1954, Héliographe monochromatique de Lyot. Ann. Astrophys.17, 541. ADS .

    ADS  Google Scholar 

  • Harvey, J.W., Bolding, J., Clark, R., Hauth, D., Hill, F., Kroll, R., Luis, G., Mills, N., Purdy, T., Henney, C., Holland, D., Winter, J.: 2011, Full-disk solar H-alpha images from GONG. In: AAS/Solar Phys. Div. Abs. # 42, Bull. Am. Astron. Soc.43, 17.45. ADS .

    Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. I: evaporating flare model. Solar Phys.34, 323. DOI . ADS .

    Article  ADS  Google Scholar 

  • Isobe, H., Takasaki, H., Shibata, K.: 2005, Measurement of the energy release rate and the reconnection rate in solar flares. Astrophys. J.632(2), 1184. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kahler, S.W., Moore, R.L., Kane, S.R., Zirin, H.: 1988, Filament eruptions and the impulsive phase of solar flares. Astrophys. J.328, 824. DOI . ADS .

    Article  ADS  Google Scholar 

  • Klassen, A., Aurass, H., Mann, G., Thompson, B.J.: 2000, Catalogue of the 1997 SOHO-EIT coronal transient waves and associated type II radio burst spectra. Astron. Astrophys. Suppl. Ser.141, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett.96(25), 255002. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the Corona and the loop prominence phenomenon. Solar Phys.50, 85. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, R., Liu, C., Xu, Y., Liu, W., Kliem, B., Wang, H.: 2013, Observation of a Moreton wave and wave-filament interactions associated with the renowned X9 Flare on 1990 May 24. Astrophys. J.773(2), 166. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lyot, B.: 1944, Le filtre monochromatique polarisant et ses applications en physique solaire. Ann. Astrophys.7, 31. ADS .

    ADS  Google Scholar 

  • Maia, D., Aulanier, G., Wang, S.J., Pick, M., Malherbe, J.-M., Delaboudinière, J.-P.: 2003, Interpretation of a complex CME event: coupling of scales in multiple flux systems. Astron. Astrophys.405, 313. DOI . ADS .

    Article  ADS  Google Scholar 

  • Malherbe, J.-M., Dalmasse, K.: 2019, The new 2018 version of the Meudon spectroheliograph. Solar Phys.294(5), 52. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martres, M.J.: 1989, The homologous flare events in solar active regions. Solar Phys.119, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martres, M.-J., Pick, M.: 1962, Matières propres aux eruptions chromosphériques associées à des emissions radio électriques. Ann. Astrophys.25, 293. ADS .

    ADS  Google Scholar 

  • Masson, S., Pariat, E., Aulanier, G., Schrijver, C.J.: 2009, The nature of flare Ribbons in Coronal null-point topology. Astrophys. J.700, 559. DOI . ADS .

    Article  ADS  Google Scholar 

  • Michard, R.: 1965, Nouvel héliographe à l’Observatoire de Meudon. L’Astronomie79, 131. ADS .

    ADS  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J.552, 833. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moreton, G.E.: 1960, H\(\alpha\) observations of flare-initiated disturbances with velocities ∼1000 km/sec Astron. J.65, 494. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mouradian, Z., Martres, M.J., Soru-Escaut, I.: 1983, The emerging magnetic flux and the elementary eruptive phenomenon. Solar Phys.87, 309. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mouradian, Z., Soru-Escaut, I.: 1989, Role of rigid rotation in the sudden disappearance of solar filaments. Astron. Astrophys.210, 410. ADS .

    ADS  Google Scholar 

  • Mouradian, Z., Soru-Escaut, I., Pojoga, S.: 1995, On the two classes of filament-prominence disappearance and their relation to coronal mass ejections. Solar Phys.158, 269. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mouradian, Z., Martres, M.-J., Soru-Escaut, I., Simnett, G.M.: 1989, Comparison of H\(\alpha\) absorbing features with soft X-ray images at the onset of Solar Flares. Astron. Astrophys.224, 267. ADS .

    ADS  Google Scholar 

  • Muhr, N., Vršnak, B., Temmer, M., Veronig, A.M., Magdalenić, J.: 2010, Analysis of a global Moreton wave observed on 2003 October 28. Astrophys. J.708(2), 1639. DOI . ADS .

    Article  ADS  Google Scholar 

  • Narukage, N., Hudson, H.S., Morimoto, T., Akiyama, S., Kitai, R., Kurokawa, H., Shibata, K.: 2002, Simultaneous observation of a Moreton wave on 1997 November 3 in H\({\alpha}\) and soft X-rays. Astrophys. J. Lett.572(1), L109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nitta, N.V., Schrijver, C.J., Title, A.M., Liu, W.: 2013, Large-scale coronal propagating fronts in solar eruptions as observed by the atmospheric imaging assembly on board the solar dynamics observatory—an ensemble study. Astrophys. J.776(1), 58. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Virtanen, I., Mursula, K., Tlatov, A., Bertello, L.: 2016, Reconstructing solar magnetic fields from historical observations. I. renormalized Ca K spectroheliograms and pseudo-magnetograms. Astron. Astrophys.585, A40. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pick, M., Malherbe, J.-M., Kerdraon, A., Maia, D.J.F.: 2005, On the disk H\(\alpha\) and radio observations of the 2003 October 28 flare and coronal mass ejection event. Astrophys. J. Lett.631, L97. DOI . ADS .

    Article  ADS  Google Scholar 

  • Qiu, J., Lee, J., Gary, D.E., Wang, H.: 2002, Motion of flare footpoint emission and inferred electric field in reconnecting current sheets. Astrophys. J.565(2), 1335. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmieder, B., Forbes, T.G., Malherbe, J.M., Machado, M.E.: 1987, Evidence for gentle chromospheric evaporation during the gradual phase of large solar flares. Astrophys. J.317, 956. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmieder, B., Aulanier, G., Mein, P., López Ariste, A.: 2006, Evolving photospheric flux concentrations and filament dynamic changes. Solar Phys.238, 245. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Beer, J., Baltensperger, U., Cliver, E.W., Güdel, M., Hudson, H.S., McCracken, K.G., Osten, R.A., Peter, T., Soderblom, D.R., Usoskin, I.G., Wolff, E.W.: 2012, Estimating the frequency of extremely energetic Solar events, based on Solar, Stellar, Lunar, and Terrestrial records. J. Geophys. Res.117, 8103. DOI . ADS .

    Article  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Living Rev. Solar Phys.8, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Soru-Escaut, I., Mouradian, Z.: 1990, Sudden disappearance and reappearance of solar filaments by heating and cooling. Astron. Astrophys.230, 474. ADS .

    ADS  Google Scholar 

  • Sterling, A.C., Moore, R.L.: 2005, Slow-rise and fast-rise phases of an erupting solar filament, and flare emission onset. Astrophys. J.630(2), 1148. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1966, Model of the high-energy phase of Solar Flares. Nature211, 695. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thompson, W.T.: 2006, Coordinate systems for solar image data. Astron. Astrophys.449(2), 791. DOI . ADS .

    Article  ADS  Google Scholar 

  • Toriumi, S., Schrijver, C.J., Harra, L.K., Hudson, H., Nagashima, K.: 2017, Magnetic properties of solar active regions that govern large solar flares and eruptions. Astrophys. J.834(1), 56. DOI . ADS .

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B.: 2005, Confined and ejective eruptions of Kink-unstable flux ropes. Astrophys. J. Lett.630, L97. DOI . ADS .

    Article  ADS  Google Scholar 

  • Uchida, Y.: 1968, Propagation of hydromagnetic disturbances in the solar Corona and Moreton’s wave phenomenon. Solar Phys.4(1), 30. DOI . ADS .

    Article  ADS  Google Scholar 

  • Warmuth, A.: 2015, Large-scale globally propagating coronal waves. Living Rev. Solar Phys.12(1), 3. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for helpful comments and suggestions. We are indebted to the Meteospace technical team: G. Barbary, C. Blanchard, I. Bualé, S. Cnudde, C. Collin, C. Colon, D. Crussaire, A. Demathieu, C. Imad, Ph. Laporte, R. Lecocguen, M. Ortiz, Ch. Renié, D. Ziegler (Observatoire de Paris) and Y. Bresson, F. Guitton, F. Morand, C. Renaud (Observatoire de la Côte d’Azur). We are also grateful for financial support to the Direction Générale de l’Armement, the scientific councils of Paris and Nice Observatories, the IDEX UCA/JEDI académie 3, Ile de France régional council and the Programme National Soleil Terre (INSU/CNRS). K. Dalmasse is supported by the Centre National d’Etudes Spatiales (CNES).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J.-M. Malherbe.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MP4 3.9 MB)

(MP4 5.3 MB)

Appendix: Electronic Supplemental Material (movies in MPEG 4 format)

Appendix: Electronic Supplemental Material (movies in MPEG 4 format)

  1. i)

    Movie 1: Running difference of contrasts applied to the typical Moreton event of 28 October 2003 from 10:41 UT to 11:22 UT (Meudon H\(\alpha\) heliograph). Contrasts C are derived from intensities I after limb darkening (LD) correction (\(C = \frac{I}{LD} - 1\)). Time step 60 seconds. Top left: contrasts at line center; top right: running differences of line center contrasts; bottom: running differences of blue wing contrasts (H\(\alpha\) − 0.5 Å, left) and red wing contrasts (H\(\alpha\) + 0.5 Å, right).

  2. ii)

    Movie 2: simulation of typical images and movies which will be provided by the new instrument, based on 28 October 2003 data, from 10:41 UT to 11:22 UT (Meudon heliograph). Top: real-time processing will provide running difference of contrasts (left) and intensities (right) in the blue wing (H\(\alpha\) - 0.5 Å). Contrasts C are derived from intensities I after limb darkening (LD) correction (\(C = \frac{I}{LD} - 1\)). Bottom: post-processing based on Muhr et al. (2010) method: base-difference between contrasts (left) or intensities (right) at time \(t\) and an offset measured before the event (reference time \(t_{0}\)), combining blue wing and line core images of the two H\(\alpha\) telescopes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malherbe, JM., Corbard, T., Dalmasse, K. et al. Meteospace, a New Instrument for Solar Survey at the Calern Observatory. Sol Phys 294, 177 (2019). https://doi.org/10.1007/s11207-019-1569-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1569-5

Keywords

Navigation