Skip to main content
Log in

Numerical simulation of reconnection in an emerging magnetic flux region

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The resistive MHD equations are numerically solved in two dimensions for an initial-boundary-value problem which simulates reconnection between an emerging magnetic flux region and an overlying coronal magnetic field. The emerging region is modelled by a cylindrical flux tube with a poloidal magnetic field lying in the same plane as the external, coronal field. The plasma betas of the emerging and coronal regions are 1.0 and 0.1, respectively, and the magnetic Reynolds number for the system is 2 × 103. At the beginning of the simulation the tube starts to emerge through the base of the rectangular computational domain, and, when the tube is halfway into the computational domain, its position is held fixed so that no more flux of plasma enters through the base. Because the time-scale of the emergence is slower than the Alfvén time-scale, but faster than the reconnection time-scale, a region of closed loops forms at the base. These loops are gradually opened and reconnected with the overlying, external magnetic field as time proceeds.

The evolution of the plasma can be divided into four phases as follows: First, an initial, quasi-steady phase during which most of the emergence is completed. During this phase, reconnection initially occurs at the slow rate predicted by the Sweet model of diffusive reconnection, but increases steadily until the fast rate predicted by the Petschek model of slow-shock reconnection is approached. Second, an impulsive phase with large-scale, super-magnetosonic flows. This phase appears to be triggered when the internal mechanical equilibrium inside the emerging flux tube is upset by reconnection acting on the outer layers of the flux tube. During the impulsive phase most of the flux tube pinches off from the base to form a cylindrical magnetic island, and temporarily the reconnection rate exceeds the steady-state Petschek rate. (At the time of the peak reconnection rate, the diffusion region at the X-line is not fully resolved, and so this may be a numerical artifact.) Third, a second quasi-steady phase during which the magnetic island created in the impulsive phase is slowly dissipated by continuing, but low-level, reconnection. And fourth, a static, non-evolving phase containing a potential, current-free field and virtually no flow.

During the short time in the impulsive phase when the reconnection rate exceeds the steady-state Petschek rate, a pile-up of magnetic flux at the neutral line occurs. At the same time the existing Petschek-slow-mode shocks are shed and replaced by new ones; and, for a while, both new and old sets of slow shocks coexist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayliss, A. and Turkel, E.: 1982, J. Comp. Phys. 48, 182.

    Google Scholar 

  • Biskamp, D.: 1982, Phys. Letters A87, 357.

    Google Scholar 

  • Boris, J. P. and Book, D. L.: 1973, J. Comp. Phys. 11, 38.

    Google Scholar 

  • Boris, J. P. and Book, D. L.: 1976, J. Comp. Phys. 20, 397.

    Google Scholar 

  • Canfield, R. C., Priest, E. R., and Rust, D. M.: 1974, in Y. Nakagawa and D. M. Rust (eds.), Flare-Related Magnetic Field Dynamics, NCAR, Boulder, Colo., U.S.A.

    Google Scholar 

  • Chu, C. K.: 1978, Adv. Appl. Mech. 18, 285.

    Google Scholar 

  • Chu, C. K. and Sereny, A.: 1974, J. Comp. Phys. 15, 476.

    Google Scholar 

  • Forbes, T. G. and Priest, E. R.: 1982, Solar Phys. 81, 303.

    Google Scholar 

  • Forbes, T. G. and Priest, E. R.: 1983, Solar Phys. 84, 170.

    Google Scholar 

  • Fyfe, D., Montgomery, D., and Joyce, G.: 1977, J. Plasma Phys. 17, 369.

    Google Scholar 

  • Glackin, D. L.: 1975, Solar Phys. 43, 317.

    Google Scholar 

  • Han, S. M., Wu, S. T., and Nakagawa, Y.: 1982, Computer Fluids 10, 195.

    Google Scholar 

  • Heyvaerts, J., Priest, E. R., and Rust, D. M.: 1977, Astrophys. J. 216, 123.

    Google Scholar 

  • Kessler, T. J.: 1968, Numerical Experiments of Plane Shock Diffraction from Two-Dimensional Obstacles, MM 68–5425–24, Bell Telephone Labs, Whippany, New Jersey.

    Google Scholar 

  • Israeli, M. and Orszag, S. A.: 1981, J. Comp. Phys. 41, 115.

    Google Scholar 

  • Jeffrey, A. and Taniuti, T.: 1964, Non-linear Wave Propagation, Academic Press, London, p. 256.

    Google Scholar 

  • Levy, R. H., Petschek, H. E., and Siscoe, G. L.: 1964, AIAA J. 2, 2065.

    Google Scholar 

  • Malherbe, J. M. and Priest, E. R.: 1983, Astron. Astrophys. 123, 80.

    Google Scholar 

  • Martin, S. and Harvey, K.: 1973, Solar Phys. 32, 389.

    Google Scholar 

  • Martres, M. J., Michard, R., Soru-Iscovici, I., and Tsap, T.: 1968, in K. O. Kiepenheuer (ed.), ‘Structure and Development of Solar Active Regions’, IAU Symp. 35, 318.

  • Matthaeus, W. H.: 1982, Geophys. Res. Letters 9, 660.

    Google Scholar 

  • Matthaeus, W. H. and Montgomery, P.: 1981, J. Plasma Phys. 25, 11.

    Google Scholar 

  • Milne, A. M. and Priest, E. R.: 1981, Solar Phys. 73, 157.

    Google Scholar 

  • Nakagawa, Y.: 1981a, Astrophys. J. 247, 707.

    Google Scholar 

  • Nakagawa, Y.: 1981b, Astrophys. J. 247, 719.

    Google Scholar 

  • Nakagawa, Y. and Steinolfson, R. S.: 1976, Astrophys. J. 207, 296.

    Google Scholar 

  • Neidig, D. F.: 1979, Solar Phys. 61, 121.

    Google Scholar 

  • Orlanski, I.: 1976, J. Comp. Phys. 21, 251.

    Google Scholar 

  • Petschek, H. E.: 1964, AAS-NASA Symp. on Solar Flares, NASA SP-50, p. 344.

  • Priest, E. R.: 1984, in E. W. Hones, Jr. (ed.), AGU Chapman Conference on Magnetic Reconnection, Los Alamos National Laboratory, New Mexico.

    Google Scholar 

  • Priest, E. R. and Sonnerup, B. U. Ö.: 1975, Geophys. J. Roy. Astron. Soc. 41, 405.

    Google Scholar 

  • Rust, D. M.: 1972, Solar Phys. 25, 141.

    Google Scholar 

  • Sato, T.: 1979, J. Geophys. Res. 84, 7177.

    Google Scholar 

  • Sheeley, N. R. and Harvey, J. W.: 1975, Solar Phys. 45, 275.

    Google Scholar 

  • Sonnerup, B. U. Ö.: 1970, J. Plasma Phys. 4, 161.

    Google Scholar 

  • Sonnerup, B. U. Ö: 1973, NASA-BSFC Doc. X-639-73-193, p. 357.

  • Sonnerup, B. U. Ö: 1979, in L. T. Lanzerotti, C. F. Kennel, and E. N. Parker (eds.), Solar System Plasma Physics, Volume III, p. 46.

  • Soward, A. M. and Priest, E. R.: 1982, J. Plasma Phys. 28, 335.

    Google Scholar 

  • Steinolfson, R. S.: 1981, J. Geophys. Res. 86, 535.

    Google Scholar 

  • Steinolfson, R. S. and Nakagawa, Y.: 1976, Astrophys. J. 207, 300.

    Google Scholar 

  • Sweet, P. A.: 1958, Nuovo Cimento Suppl. 8X, 188.

    Google Scholar 

  • Tur, T. J. and Priest, E. R.: 1976, Solar Phys. 48, 89.

    Google Scholar 

  • Tur, T. J. and Priest, E. R.: 1978, Solar Phys. 58, 181.

    Google Scholar 

  • Vasyliunas, V. M.: 1975, Rev. Geophys. Space Phys. 13, 303.

    Google Scholar 

  • Vorpahl, J. A.: 1973, Solar Phys. 28, 115.

    Google Scholar 

  • Weber, W. J., Boris, J. P., and Gardner, J. J.: 1979, Computer Phys. Commun. 16, 243.

    Google Scholar 

  • Yang, C. K. and Sonnerup, B. U. Ö.: 1976, J. Geophys. Res. 82, 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forbes, T.G., Priest, E.R. Numerical simulation of reconnection in an emerging magnetic flux region. Sol Phys 94, 315–340 (1984). https://doi.org/10.1007/BF00151321

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00151321

Keywords

Navigation