Skip to main content
Log in

Single ICMEs and Complex Transient Structures in the Solar Wind in 2010 – 2011

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyze the statistics, solar sources, and properties of interplanetary coronal mass ejections (ICMEs) in the solar wind. The total number of coronal mass ejections (CMEs) registered in the Coordinated Data Analysis Workshops catalog (CDAW) during the first eight years of Cycle 24 was 61% larger than in the same period of Cycle 23, but the number of X-ray flares registered by the Geostationary Operational Environmental Satellite (GOES) was 20 % smaller because the solar activity was lower. The total number of ICMEs in the given period of Cycle 24 in the Richardson and Cane list was 29% smaller than in Cycle 23, which may be explained by a noticeable number of non-classified ICME-like events in the beginning of Cycle 24. For the period January 2010 – August 2011, we identify solar sources of the ICMEs that are included in the Richardson and Cane list. The solar sources of ICME were determined from coronagraph observations of the Earth-directed CMEs, supplemented by modeling of their propagation in the heliosphere using kinematic models (a ballistic and drag-based model). A detailed analysis of the ICME solar sources in the period under study showed that in 11 cases out of 23 (48%), the observed ICME could be associated with two or more sources. For multiple-source events, the resulting solar wind disturbances can be described as complex (merged) structures that are caused by stream interactions, with properties depending on the type of the participating streams. As a reliable marker to identify interacting streams and their sources, we used the plasma ion composition because it freezes in the low corona and remains unchanged in the heliosphere. According to the ion composition signatures, we classify these cases into three types: complex ejecta originating from weak and strong CME–CME interactions, as well as merged interaction regions (MIRs) originating from the CME high-speed stream (HSS) interactions. We describe temporal profiles of the ion composition for the single-source and multi-source solar wind structures and compared them with the ICME signatures determined from the kinematic and magnetic field parameters of the solar wind. In single-source events, the ion charge state, as a rule, has a one-peak enhancement with an average duration of \(\text{about one}\) day, which is similar to the mean ICME duration of 1.12 days derived from the Richardson and Cane list. In the multi-source events, the total profile of the ion charge state consists of a sequence of enhancements that is associated with the interaction between the participating streams. On average, the total duration of the complex structures that appear as a result of the CME–CME and CME–HSS interactions as determined from their ion composition is 2.4 days, which is more than twice longer than that of the single-source events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm.

  2. http://www.srl.caltech.edu/ACE/ASC/level2/index.html.

  3. https://sdo.gsfc.nasa.gov/.

  4. https://cdaw.gsfc.nasa.gov/.

  5. http://spaceweather.gmu.edu/seeds/secchi.php.

  6. https://secchi.nrl.navy.mil/cactus/.

  7. http://sidc.oma.be/silso/.

  8. http://helioweather.net/.

  9. http://www.helioweather.net.

  10. http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm.

  11. http://sidc.oma.be/cactus/.

  12. http://spaceweather.gmu.edu/seeds/.

  13. https://cdaw.gsfc.nasa.gov/.

  14. http://helioweather.net.

References

  • Andrews, M.-D.: 2003, A search for CMEs associated with big flares. Solar Phys.218, 261. DOI .

    Article  ADS  Google Scholar 

  • Behannon, K.W., Burlaga, L.F., Hewish, A.: 1991, Structure and evolution of compound streams at not greater than 1 AU. J. Geophys. Res.96, 21. DOI .

    Article  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys.162, 357. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Behannon, K.W., Klein, L.W.: 1987, Compound streams, magnetic clouds, and major geomagnetic storms. J. Geophys. Res.92, 5725. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Plunkett, S.P., St. Cyr, O.C.: 2002, Successive CMEs and complex ejecta. J. Geophys. Res.107, 1266. DOI .

    Article  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res.86, 6673. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L., Berdichevsky, D., Gopalswamy, N., Lepping, R., Zurbuchen, T.: 2003, Merged interaction regions at 1 AU. J. Geophys. Res.108, 1425. DOI .

    Article  Google Scholar 

  • Compagnino, A., Romano, P., Zuccarello, F.: 2017, A statistical study of CME properties and of the correlation between flares and CMEs over the Solar Cycles 23 and 24. Solar Phys.292, 5. DOI .

    Article  ADS  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Phys.162, 291. DOI .

    Article  ADS  Google Scholar 

  • Echer, E., Alves, M.V., Gonzalez, W.D.: 2005, A statistical study of magnetic cloud parameters and geoeffectiveness. J. Atmos. Solar-Terr. Phys.67, 839. DOI .

    Article  ADS  Google Scholar 

  • Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., Share, G.H., Vourlidas, A., Welsch, B.T.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J.759, 71. DOI .

    Article  ADS  Google Scholar 

  • Farrugia, C.J., Burlaga, L.F., Lepping, R.P.: 1997, Magnetic clouds and the quiet-storm effect at Earth. In: Tzurutani, B.T., Gonzalez, W.D., Kamide, Y., Arballo, J.K. (eds.) Magnetic Storms, Geophys. Mon. Ser.98, Am. Geophys. Union, Washington, 91.

    Chapter  Google Scholar 

  • Feldman, U.: 1992, Elemental abundances in the upper solar atmosphere. Phys. Scr. T46, 202.

    Article  ADS  Google Scholar 

  • Feldman, U., Landi, E., Schwadron, N.-A.: 2005, On the sources of fast and slow solar wind. J. Geophys. Res.110, A07109. DOI .

    Article  ADS  Google Scholar 

  • Galvin, A.B.: 2013, Solar wind ion observations: comparison from the depths of solar minimum to the rising of the cycle. AIP Conf. Proc.1539, 15. DOI .

    Article  ADS  Google Scholar 

  • Gloeckler, G., Cain, J., Ipavich, F.M., Tums, E.O., Bedini, P., Fisk, L.A., Zurbuchen, T.H., Bochsler, P., Fischer, J., Wimmer-Schweingruber, R.F., Geiss, J., Kallenbach, R.: 1998, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev.86, 497. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Akiyama, S., Xie, H., Yashiro, S., Reinard, A.A.: 2013, The solar connection of enhanced heavy ion charge states in the interplanetary medium: implications for the flux-rope structure of CMEs. Solar Phys.284, 17. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Mäkelä, P.: 2015, Properties and geoeffectiveness of magnetic clouds during Solar Cycles 23 and 24. J. Geophys. Res.120, 9221. DOI .

    Article  Google Scholar 

  • Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L.: 1990, Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett.17, 901. DOI .

    Article  ADS  Google Scholar 

  • Gosling, J.-T., McComas, D.-J., Phillips, J.-L., Bame, S.-J.: 1991, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res.96, 7831. DOI .

    Article  ADS  Google Scholar 

  • Harrison, R.A., Davies, J.A., Möstl, C., Liu, Y., Temmer, M., Bisi, M.M., Eastwood, J.P., de Koning, C.A., Nitta, N., Rollett, T., Farrugia, C.J., Forsyth, R.J., Jackson, B.V., Jensen, E.A., Kilpua, E.K.J., Odstrcil, D., Webb, D.F.: 2012, An analysis of the origin and propagation of the multiple coronal mass ejections of 2010 August 1. Astrophys. J.750, 45. DOI .

    Article  ADS  Google Scholar 

  • Heidrich-Meisner, V., Peleikis, T., Kruse, M., Berger, L., Wimmer-Schweingruber, R.: 2016, Observations of high and low Fe charge states in individual solar wind streams with coronal-hole origin. Astron. Astrophys.593, A70. DOI .

    Article  ADS  Google Scholar 

  • Hess, P., Zhang, J.: 2017, A study of the Earth-affecting CMEs of Solar Cycle 24. Solar Phys.292, 80. DOI .

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev.136, 67. DOI .

    Article  ADS  Google Scholar 

  • Hudson, H.S., Cliver, E.W.: 2001, Observing coronal mass ejections without coronagraphs. J. Geophys. Res.106, 25199. DOI .

    Article  ADS  Google Scholar 

  • Hundhausen, A.-J., Gilbert, H.-E., Bame, S.-J.: 1968, Ionization state of the interplanetary plasma. J. Geophys. Res.73, 5485. DOI .

    Article  ADS  Google Scholar 

  • Kataoka, R., Shiota, D., Kilpua, E., Keika, K.: 2015, Pileup accident hypothesis of magnetic storm on 17 March 2015. Geophys. Res. Lett.42, 5155. DOI .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T.: 2012, Observations of ICMEs and ICME-like solar wind structures from 2007 – 2010 using near-Earth and STEREO observations. Solar Phys.281, 391. DOI .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Mierla, M., Zhukov, A.N., Rodriguez, L., Vourlidas, A., Wood, B.: 2014, Solar sources of interplanetary coronal mass ejections during the Solar Cycle 23/24 minimum. Solar Phys.289, 3773. DOI .

    Article  ADS  Google Scholar 

  • Kocher, M., Lepri, S.T., Landi, E., Zhao, L., Manchester, W.B. IV: 2017, Anatomy of depleted interplanetary coronal mass ejections. Astrophys. J.834, 147. DOI .

    Article  ADS  Google Scholar 

  • Laming, J.M.: 2015, The FIP and inverse FIP effects in solar and stellar coronae. Living Rev. Solar Phys.12, 2. DOI .

    Article  ADS  Google Scholar 

  • Lawrance, M.B., Shanmugaraju, A., Moon, Y.-J., Ibrahim, M.S., Umapathy, S.: 2016, Relationships between interplanetary coronal mass ejection characteristics and geoeffectiveness in the rising phase of Solar Cycles 23 and 24. Solar Phys.291, 1547. DOI .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys.275, 17. DOI .

    Article  ADS  Google Scholar 

  • Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., Richardson, I.G., Cane, H.V., Gloeckler, G.: 2001, Iron charge distribution as an identifier of interplanetary coronal mass ejections. J. Geophys. Res.106, 29231. DOI .

    Article  ADS  Google Scholar 

  • Liu, Y.D., Yang, Z., Wang, R., Luhmann, J.G., Richardson, J.D., Lugaz, N.: 2014a, Sun-to-Earth characteristics of two coronal mass ejections interacting near 1 AU: formation of a complex ejecta and generation of a two-step geomagnetic storm. Astrophys. J. Lett.793, L41. DOI .

    Article  ADS  Google Scholar 

  • Liu, Y.D., Yang, Z., Wang, R., Luhmann, J.G., Richardson, J.D., Lugaz, N.: 2014b, Sun-to-Earth characteristics of two coronal mass ejections interacting near 1 AU: formation of a complex ejecta and generation of a two-step geomagnetic storm. Astrophys. J. Lett.793, L41. DOI .

    Article  ADS  Google Scholar 

  • Liu, Y.D., Hu, H., Wang, R., Yang, Z., Zhu, B., Liu, Y.A., Luhmann, J.G., Richardson, J.D.: 2015, Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys. J. Lett.809, L34. DOI .

    Article  ADS  Google Scholar 

  • Liu, Y., Luhmann, J.G., Bale, S.D., Lin, R.P.: 2011, Solar source and heliospheric consequences of the 2010 April 3 coronal mass ejection: a comprehensive view. Astrophys. J.734, 84. DOI .

    Article  ADS  Google Scholar 

  • Lugaz, N., Farrugia, C.J., Davies, J.A., Möstl, C., Davis, C.J., Roussev, I.I., Temmer, M.: 2012, The deflection of the two interacting coronal mass ejections of 2010 May 23 – 24 as revealed by combined in situ measurements and heliospheric imaging. Astrophys. J.759, 68. DOI .

    Article  ADS  Google Scholar 

  • Lugaz, N., Temmer, M., Wang, Y., Farrugia, C.J.: 2017, The interaction of successive coronal mass ejections: a review. Solar Phys.292, 64. DOI .

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev.86, 563. DOI .

    Article  ADS  Google Scholar 

  • Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D.: 2003, Sympathetic coronal mass ejections. Astrophys. J.588, 1176. DOI .

    Article  ADS  Google Scholar 

  • Möstl, C., Temmer, M., Rollett, T., Farrugia, C.J., Liu, Y., Veronig, A.M., Leitner, M., Galvin, A.B., Biernat, H.K.: 2010, STEREO and wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5 – 7 April 2010. Geophys. Res. Lett.37, L24103. DOI .

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Kilpua, E.K.J., Jian, L.K., Liu, Y., Eastwood, J.P., Harrison, R.A., Webb, D.F., Temmer, M., Odstrcil, D., Davies, J.A., Rollett, T., Luhmann, J.G., Nitta, N., Mulligan, T., Jensen, E.A., Forsyth, R., Lavraud, B., de Koning, C.A., Veronig, A.M., Galvin, A.B., Zhang, T.L., Anderson, B.J.: 2012, Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere. Astrophys. J.758, 10. DOI .

    Article  ADS  Google Scholar 

  • Mrozek, T., Gburek, S., Siarkowski, M., Sylwester, B., Sylwester, J., Kȩpa, A., Gryciuk, M.: 2013, Solar flares observed simultaneously with SphinX, GOES and RHESSI. In: Kosovichev, A.G., de Gouveia Dal Pino, E., Yan, Y. (eds.) Solar and Astrophysical Dynamos and Magnetic Activity, IAU Symposium294, 571. DOI .

    Chapter  Google Scholar 

  • Nolte, J.T., Roelof, E.C.: 1973, Large-scale structure of the interplanetary medium, I: high coronal source longitude of the quiet-time solar wind. Solar Phys.33, 241. DOI .

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev.71, 55. DOI .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2004, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res.109, A09104. DOI .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys.264, 189. DOI .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J.701, 283. DOI .

    Article  ADS  Google Scholar 

  • Rodkin, D.G., Shugay, Y.S., Slemzin, V.A., Veselovskii, I.S.: 2016, Interaction of high-speed and transient fluxes of solar wind at the maximum of Solar Cycle 24. Bull. Lebedev Phys. Inst.43, 287. DOI .

    Article  ADS  Google Scholar 

  • Rod’kin, D.G., Shugay, Y.S., Slemzin, V.A., Veselovskii, I.S.: 2016, The effect of solar activity on the evolution of solar wind parameters during the rise of the 24th cycle. Solar Syst. Res.50, 44. DOI .

    Article  ADS  Google Scholar 

  • Rodkin, D., Goryaev, F., Pagano, P., Gibb, G., Slemzin, V., Shugay, Y., Veselovsky, I., Mackay, D.H.: 2017, Origin and ion charge state evolution of solar wind transients during 4 – 7 August 2011. Solar Phys.292, 90. DOI .

    Article  ADS  Google Scholar 

  • Rouillard, A.P., Lavraud, B., Sheeley, N.R., Davies, J.A., Burlaga, L.F., Savani, N.P., Jacquey, C., Forsyth, R.J.: 2010, White light and in situ comparison of a forming merged interaction region. Astrophys. J.719, 1385. DOI .

    Article  ADS  Google Scholar 

  • Schwenn, R., Raymond, J.C., Alexander, D., Ciaravella, A., Gopalswamy, N., Howard, R., Hudson, H., Kaufmann, P., Klassen, A., Maia, D., Munoz-Martinez, G., Pick, M., Reiner, M., Srivastava, N., Tripathi, D., Vourlidas, A., Wang, Y.-M., Zhang, J.: 2006, Coronal observations of CMEs. Report of working group A. Space Sci. Rev.123, 127. DOI .

    Article  ADS  Google Scholar 

  • Shen, F., Wang, Y., Shen, C., Feng, X.: 2017, On the collision nature of two coronal mass ejections: a review. Solar Phys.292, 104. DOI .

    Article  ADS  Google Scholar 

  • Shi, T., Wang, Y., Wan, L., Cheng, X., Ding, M., Zhang, J.: 2015, Predicting the arrival time of coronal mass ejections with the graduated cylindrical shell and drag force model. Astrophys. J.806, 271. DOI .

    Article  ADS  Google Scholar 

  • Shugay, Y.S., Veselovsky, I.S., Seaton, D.B., Berghmans, D.: 2011, Hierarchical approach to forecasting recurrent solar wind streams. Solar Syst. Res.45, 546. DOI .

    Article  ADS  Google Scholar 

  • Shugay, Y.S., Veselovsky, I.S., Slemzin, V.A., Yermolaev, Y.I., Rodkin, D.G.: 2017, Possible causes of the discrepancy between the predicted and observed parameters of high-speed solar wind streams. Cosm. Res.55, 20. DOI .

    Article  ADS  Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev.86, 613. DOI .

    Article  ADS  Google Scholar 

  • Somov, B.V. (ed.): 2013, Plasma Astrophysics, Part II, Astrophysics and Space Science Library392. DOI .

    Book  MATH  Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev.86, 1. DOI .

    Article  ADS  Google Scholar 

  • Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J.743, 101. DOI .

    Article  ADS  Google Scholar 

  • Temmer, M., Vršnak, B., Rollett, T., Bein, B., de Koning, C.A., Liu, Y., Bosman, E., Davies, J.A., Möstl, C., Žic, T., Veronig, A.M., Bothmer, V., Harrison, R., Nitta, N., Bisi, M., Flor, O., Eastwood, J., Odstrcil, D., Forsyth, R.: 2012, Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME–CME interaction event. Astrophys. J.749, 57. DOI .

    Article  ADS  Google Scholar 

  • Temmer, M., Reiss, M.A., Nikolic, L., Hofmeister, S.J., Veronig, A.M.: 2017, Preconditioning of interplanetary space due to transient CME disturbances. Astrophys. J.835, 141. DOI .

    Article  ADS  Google Scholar 

  • Žic, T., Vršnak, B., Temmer, M.: 2015, Heliospheric propagation of coronal mass ejections: drag-based model fitting. Astrophys. J. Suppl.218, 32. DOI .

    Article  ADS  Google Scholar 

  • Verbanac, G., Živković, S., Vršnak, B., Bandić, M., Hojsak, T.: 2013, Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astron. Astrophys.558, A85. DOI .

    Article  ADS  Google Scholar 

  • von Steiger, R., Christon, S.P., Gloeckler, G., Ipavich, F.M.: 1992, Variable carbon and oxygen abundances in the solar wind as observed in Earth’s magnetosheath by AMPTE/CCE. Astrophys. J.389, 791. DOI .

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys.9. DOI .

  • Wu, C.-C., Liou, K., Lepping, R.P., Hutting, L., Plunkett, S., Howard, R.A., Socker, D.: 2016, The first super geomagnetic storm of Solar Cycle 24: “The St. Patrick’s day event (17 March 2015)”. Earth Planets Space68, 151. DOI .

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N.: 2009, Statistical relationship between solar flares and coronal mass ejections. In: Gopalswamy, N., Webb, D.-F. (eds.) Universal Heliophysical Processes, IAU Symposium257, 233. DOI .

    Chapter  Google Scholar 

  • Yermolaev, Y.I., Yermolaev, M.Y., Lodkina, I.G., Nikolaeva, N.S.: 2007, Statistical investigation of heliospheric conditions resulting in magnetic storms. Cosm. Res.45, 1. DOI .

    Article  ADS  Google Scholar 

  • Yermolaev, Y.-I., Nikolaeva, N.-S., Lodkina, I.-G., Yermolaev, M.-Y.: 2012, Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res.117, A00L07. DOI .

    Article  ADS  Google Scholar 

  • Zhang, G., Burlaga, L.F.: 1988, Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases. J. Geophys. Res.93, 2511. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Wang, J.: 2002, Are homologous flare-coronal mass ejection events triggered by moving magnetic features? Astrophys. J. Lett.566, L117. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Liemohn, M.W., Kozyra, J.U., Lynch, B.J., Zurbuchen, T.H.: 2004, A statistical study of the geoeffectiveness of magnetic clouds during high solar activity years. J. Geophys. Res.109, A09101. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst}< = -100~\mbox{nT}\)) during 1996 – 2005. J. Geophys. Res.112, A10102. DOI .

    Article  ADS  Google Scholar 

  • Zhao, L., Landi, E., Kocher, M., Lepri, S.T., Fisk, L.A.: 2016, Anomalously low C6+/C5+ ratio in solar wind: ACE/SWICS observation. In: AIP Publishing LLC, AIP Conference Proceedings1720, 020006. DOI .

    Chapter  Google Scholar 

  • Zhukov, A.N.: 2007, Using CME observations for geomagnetic storm forecasting. In: Lilensten, J. (ed.) Space Weather : Research Towards Applications in Europe 2nd European Space Weather Week (ESWW2), Astrophysics and Space Science Library344, 5. DOI .

    Chapter  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev.123, 31. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ian Richardson and Hilary Cane for their list of Near-Earth Interplanetary Coronal Mass Ejections,Footnote 10 which we used in our investigations. This paper also uses data from the CACTus CME catalog,Footnote 11 generated and maintained by the SIDC at the Royal Observatory of Belgium, and the SEEDS CME catalog.Footnote 12 The SEEDS project has been supported by NASA Living With a Star Program and NASA Applied Information Systems Research Program. We have used the CME catalog that is generated and maintained at the CDAW Data CenterFootnote 13 by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. The authors thank the STEREO, GOES, SDO/AIA, and ACE research teams for their open data policy. We are grateful for the opportunity to use the results of the simulation obtained by the WSA-Enlil Cone and DBM models.Footnote 14 This work was supported by the Russian Scientific Foundation project 17-12-01567. A.N. Zhukov acknowledges support from the Belgian Federal Science Policy Office through the ESA-PRODEX programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rodkin.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodkin, D., Slemzin, V., Zhukov, A.N. et al. Single ICMEs and Complex Transient Structures in the Solar Wind in 2010 – 2011. Sol Phys 293, 78 (2018). https://doi.org/10.1007/s11207-018-1295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1295-4

Keywords

Navigation