Skip to main content
Log in

The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-Rope Structure of CMEs

  • Flux-Rope Structure of Coronal Mass Ejections
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We investigated a set of 54 interplanetary coronal mass ejection (ICME) events whose solar sources are very close to the disk center (within ± 15 from the central meridian). The ICMEs consisted of 23 magnetic-cloud (MC) events and 31 non-MC events. Our analyses suggest that the MC and non-MC ICMEs have more or less the same eruption characteristics at the Sun in terms of soft X-ray flares and CMEs. Both types have significant enhancements in ion charge states, although the non-MC structures have slightly lower levels of enhancement. The overall duration of charge-state enhancement is also considerably smaller than that in MCs as derived from solar wind plasma and magnetic signatures. We find very good correlation between the Fe and O charge-state measurements and the flare properties such as soft X-ray flare intensity and flare temperature for both MCs and non-MCs. These observations suggest that both MC and non-MC ICMEs are likely to have a flux-rope structure and the unfavorable observational geometry may be responsible for the appearance of non-MC structures at 1 AU. We do not find any evidence for an active region expansion resulting in ICMEs lacking a flux-rope structure because the mechanism of producing high charge states and the flux-rope structure at the Sun is the same for MC and non-MC events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  • Aguilar-Rodriguez, E., Blanco-Cano, X., Gopalswamy, N.: 2006, Composition and magnetic structure of interplanetary coronal mass ejections at 1 AU. Adv. Space Res. 38, 522.

    Article  ADS  Google Scholar 

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485.

    Article  ADS  Google Scholar 

  • Bame, S.J., Asbridge, J.R., Feldman, W.C., Fenimore, E.E., Gosling, J.T.: 1979, Solar wind heavy ions from flare-heated coronal plasma. Solar Phys. 62, 179.

    Article  ADS  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673.

    Article  ADS  Google Scholar 

  • Burlaga, L., Fitzenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., et al.: 1998, A magnetic cloud containing prominence material – January 1997. J. Geophys. Res. 10, 277.

    Article  ADS  Google Scholar 

  • Cho, K.-S., Park, S.-H., Marubashi, K., Gopalswamy, N., Akiyama, S., Yashiro, S., Kim, R.-S.: 2013, Comparison of helicity signs in interplanetary CMEs and their solar source regions. Solar Phys., in this issue.

  • Garcia, H.: 1994, Temperature and emission measure from GOES soft X-ray measurements. Solar Phys. 154, 275.

    Article  ADS  Google Scholar 

  • Gilbert, J.A., Lepri, S.T., Landi, E., Zurbuchen, T.H.: 2012, First measurements of the complete heavy-ion charge state distributions of C, O, and Fe associated with interplanetary coronal mass ejections. Astrophys. J. 751, 20.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2006a, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2006b, Coronal mass ejections and type II radio bursts. In: Gopalswamy, N., Mewaldt, R., Torsti, J. (eds.) Solar Eruptions and Energetic Particles, Geophys. Monogr. Ser. 165, AGU, Washington, 207.

    Chapter  Google Scholar 

  • Gopalswamy, N.: 2006c, Consequences of coronal mass ejections in the heliosphere. Sun Geosph. 1, 5.

    Google Scholar 

  • Gopalswamy, N.: 2010, Coronal mass ejections: a summary of recent results. In: Proceedings of the 20th National Solar Physics Meeting, held 31 May – 4 June, 2010, Papradno, Slovakia, 108 – 130.

    Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S.: 2009, Major solar flares without coronal mass ejections. In: Gopalswamy, N., Webb, D.F. (eds.) Proceedings of IAU Symposium 257, Universal Heliophysical Processes, 283.

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Akiyama, S.: 2007, Geoeffectiveness of halo coronal mass ejections. J. Geophys. Res. 112, A06112. doi: 10.1029/2006JA012149 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Raulin, J.-P., Kundu, M.R., Nitta, N., Lemen, J.R., Herrmann, R., Zarro, D., Kosugi, T.: 1995, VLA and YOHKOH observations of an M1.5 flare. Astrophys. J. 455, 715.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Hanaoka, Y., Kosugi, T., Lepping, R.P., Steinberg, J.T., Plunkett, S., et al.: 1998, On the relationship between coronal mass ejections and magnetic clouds. Geophys. Res. Lett. 25, 2485.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Krucker, S., Stenborg, G., Howard, R.A.: 2004, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, A12105. doi: 10.1029/2004JA010602 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Aguilar-Rodriguez, E., Yashiro, S., Nunes, S., Kaiser, M.L., Howard, R.A.: 2005, Type II radio bursts and energetic solar eruptions. J. Geophys. Res. 110, A12S07. doi: 10.1029/2005JA011158 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., Yashiro, S.: 2009a, CME interactions with coronal holes and their interplanetary consequences. J. Geophys. Res. 114, A00A22. doi: 10.1029/2008JA013686 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009b, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Dal Lago, A., Yashiro, S., Akiyama, S.: 2009c, The expansion and radial speeds of coronal mass ejections. Cent. Eur. Astrophys. Bull. 33, 115.

    ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2010a, Interplanetary shocks lacking type II radio bursts. Astrophys. J. 710, 1111.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Mäkelä, P.: 2010b, Coronal mass ejections from sunspot and non-sunspot regions. In: Hasan, S.S., Rutten, R.J. (eds.) Magnetic Coupling Between the Interior and Atmosphere of the Sun, Astrophysics and Space Science Proceedings, Springer, Berlin, 289.

    Chapter  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Mäkelä, P., Vourlidas, A., Howard, R.A.: 2010c, A catalog of halo coronal mass ejections from SOHO. Sun Geosph. 5, 7.

    ADS  Google Scholar 

  • Gopalswamy, N., Nitta, N., Akiyama, S., Mäkelä, P., Yashiro, S.: 2012, Coronal magnetic field measurement from EUV images made by the solar dynamics observatory. Astrophys. J. 744, 72.

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1990, Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space in Physics of Magnetic Flux Ropes, Geophys. Monogr. Ser. 58, 343.

    Book  Google Scholar 

  • Hanaoka, Y., Kurokawa, H., Enome, S., Nakajima, H., Shibasaki, K., Nishio, M., et al.: 1994, Simultaneous observations of a prominence eruption followed by a coronal arcade formation in radio, soft X-rays, and H(alpha). Publ. Astron. Soc. Japan 46, 205.

    ADS  Google Scholar 

  • Henke, T., Woch, J., Mall, U., Livi, S., Wilken, B., Schwenn, R., et al.: 1998, Differences in the O7+/O6+ ratio of magnetic cloud and non-cloud coronal mass ejections. Geophys. Res. Lett. 25, 3465.

    Article  ADS  Google Scholar 

  • Henke, T., Woch, J., Schwenn, R., Mall, U., Gloeckler, G., von Steiger, R., et al.: 2001, Ionization state and magnetic topology of coronal mass ejections. J. Geophys. Res. 106, 10613.

    Article  Google Scholar 

  • Hundhausen, A.J., Gilbert, H.E., Bame, S.J.: 1968, Ionization state of the interplanetary plasma. J. Geophys. Res. 73, 5485.

    Article  ADS  Google Scholar 

  • Kim, R.-S., Gopalswamy, N., Cho, K.-S., Moon, Y.-J., Yashiro, S.: 2013, Propagation characteristics of CMEs associated magnetic clouds and ejecta. Solar Phys., in this issue.

  • Lepri, S.T., Zurbuchen, T.H.: 2004, Iron charge state distributions as an indicator of hot ICMEs: possible sources and temporal and spatial variations during solar maximum. J. Geophys. Res. 109, A01112. doi: 10.1029/2003JA009954 .

    Article  ADS  Google Scholar 

  • Lepri, S.T., Zurbuchen, T.H.: 2010, Direct observational evidence of filament material within interplanetary coronal mass ejections. Astrophys. J. Lett. 723, L22.

    Article  ADS  Google Scholar 

  • Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., Richardson, I.G., Cane, H.V., Gloeckler, G.: 2001, Iron charge state distributions as an identifier of interplanetary coronal mass ejections. J. Geophys. Res. 106, 29231.

    Article  ADS  Google Scholar 

  • Lin, J., Raymond, J.C., van Ballegooijen, A.A.: 2004, The role of magnetic reconnection in the observable features of solar eruptions. Astrophys. J. 602, 422.

    Article  ADS  Google Scholar 

  • Lynch, B.J., Reinard, A.A., Mulligan, T., Reeves, K.K., Rakowski, C.E., Allred, J.C., et al.: 2011, Ionic composition structure of coronal mass ejections in axisymmetric magnetohydrodynamic models. Astrophys. J. 740, 112.

    Article  ADS  Google Scholar 

  • Marubashi, K.: 1997, Interplanetary magnetic flux ropes and solar filaments. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. Ser. 99, AGU, Washington, 147.

    Chapter  Google Scholar 

  • Owens, M.J., Cargill, P.J., Pagel, C., Siscoe, G.L., Crooker, N.U.: 2005, Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res. 110, A01105. doi: 10.1029/2004JA010814 .

    Article  ADS  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758.

    Article  ADS  Google Scholar 

  • Rakowski, C.E., Laming, M.J., Lepri, S.T.: 2007, Ion charge states in halo coronal mass ejections: what can we learn about the explosion? Astrophys. J. 667, 602.

    Article  ADS  Google Scholar 

  • Reinard, A.: 2005, Comparison of interplanetary CME charge state composition with CME-associated flare magnitude. Astrophys. J. 620, 501.

    Article  ADS  Google Scholar 

  • Reinard, A.A.: 2008, Analysis of interplanetary coronal mass ejection parameters as a function of energetics, source location, and magnetic structure. Astrophys. J. 682, 1289.

    Article  ADS  Google Scholar 

  • Reinard, A.A., Zurbuchen, T.H., Fisk, L.A., Lepri, S.T., Skoug, R.M., Gloeckler, G.: 2001, Comparison between average charge states and abundances of ions in CMEs and the slow solar wind. AIP Conf. Proc. 598(1), 139.

    Article  ADS  Google Scholar 

  • Riley, P., Schatzman, C., Cane, H.V., Richardson, I.G., Gopalswamy, N.: 2006, On the rates of coronal mass ejections: remote solar and in situ observations. Astrophys. J. 647, 648.

    Article  ADS  Google Scholar 

  • Schmahl, E.J., Schmelz, J.T., Saba, J.L.R., Strong, K.T., Kundu, M.R.: 1990, Microwave and X-ray observations of a major confined solar flare. Astrophys. J. 358, 654.

    Article  ADS  Google Scholar 

  • Uchida, Y., McAllister, A., Strong, K.T., Ogawara, Y., Shimizu, T., Matsumoto, R., Hudson, H.S.: 1992, Continual expansion of the active region corona observed by the Yohkoh soft X-ray telescope. Publ. Astron. Soc. Japan 44, L155.

    ADS  Google Scholar 

  • Xie, H., Gopalswamy, N., St. Cyr, O.C.: 2013, Near-Sun flux rope structure of CMEs. Solar Phys. in this issue. doi: 10.1007/s11207-012-0209-0 .

    Google Scholar 

  • Yashiro, S., Gopalswamy, N.: 2009, Statistical relationship between solar flares and coronal mass ejections. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symposium 257, Universal Heliophysical Processes, Cambridge Univ. Press, London, 233.

    Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. doi: 10.1029/2003JA010282 .

    Article  ADS  Google Scholar 

  • Zhao, L., Zurbuchen, T.H., Fisk, L.A.: 2009, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, L14104. doi: 10.1029/2009GL039181 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the ACE, Wind, and SOHO teams for providing the data on line. SOHO is a project of international collaboration between ESA and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gopalswamy.

Additional information

Flux-Rope Structure of Coronal Mass Ejections

Guest Editors: N. Gopalswamy, T. Nieves-Chinchilla, M. Hidalgo, J. Zhang, and P. Riley

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalswamy, N., Mäkelä, P., Akiyama, S. et al. The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-Rope Structure of CMEs. Sol Phys 284, 17–46 (2013). https://doi.org/10.1007/s11207-012-0215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0215-2

Keywords

Navigation