Skip to main content
Log in

Propagation of Fast Coronal Mass Ejections and Shock Waves Associated with Type II Radio-Burst Emission: An Analytic Study

  • OBSERVATIONS AND MODELLING OF THE INNER HELIOSPHERE
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Coronal mass ejections (CMEs) are large-scale eruptive events in the solar corona. Once they are expelled into the interplanetary (IP) medium, they propagate outwards and “evolve” interacting with the solar wind. Fast CMEs associated with IP shocks are a critical subject for space weather investigations. We present an analytic model to study the heliocentric evolution of fast CME/shock events and their association with type II radio-burst emissions. The propagation model assumes an early stage where the CME acts as a piston driving a shock wave; beyond this point the CME decelerates, tending to match the ambient solar wind speed and its shock decays. We use the shock speed evolution to reproduce type II radio-burst emissions. We analyse four fast CME halo events that were associated with kilometric type II radio bursts, and in-situ measurements of IP shock and CME signatures. The results show good agreement with the dynamic spectra of the type II frequency drifts and the in-situ measurements. This suggests that, in general, IP shocks associated with fast CMEs evolve as blast waves approaching 1 AU, implying that the CMEs do not drive their shocks any further at this heliocentric range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aschwanden, M.J., Nitta, N.V., Wuelser, J.-P., Lemen, J.R., Sandman, A., Vourlidas, A., Colaninno, R.C.: 2009, First measurements of the mass of coronal mass ejections from the EUV dimming observed with STEREO EUVI A+B spacecraft. Astrophys. J. 706, 376 – 392. doi: 10.1088/0004-637X/706/1/376 .

    Article  ADS  Google Scholar 

  • Bisi, M.M., Breen, A.R., Jackson, B.V., Fallows, R.A., Walsh, A.P., Mikić, Z., Riley, P., Owen, C.J., Gonzalez-Esparza, A., Aguilar-Rodriguez, E., Morgan, H., Jensen, E.A., Wood, A.G., Owens, M.J., Tokumaru, M., Manoharan, P.K., Chashei, I.V., Giunta, A.S., Linker, J.A., Shishov, V.I., Tyul’Bashev, S.A., Agalya, G., Glubokova, S.K., Hamilton, M.S., Fujiki, K., Hick, P.P., Clover, J.M., Pintér, B.: 2010, From the Sun to the Earth: The 13 May 2005 coronal mass ejection. Solar Phys. 265, 49 – 127. doi: 10.1007/s11207-010-9602-8 .

    Article  ADS  Google Scholar 

  • Borgazzi, A., Lara, A., Echer, E., Alves, M.V.: 2009, Dynamics of coronal mass ejections in the interplanetary medium. Astron. Astrophys. 498, 885 – 889. doi: 10.1051/0004-6361/200811171 .

    Article  ADS  MATH  Google Scholar 

  • Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1 – 24. doi: 10.1007/s005850050575 .

    Article  ADS  Google Scholar 

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The radio and plasma wave investigation on the Wind spacecraft. Space Sci. Rev. 71, 231 – 263. doi: 10.1007/BF00751331 .

    Article  ADS  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673 – 6684. doi: 10.1029/JA086iA08p06673 .

    Article  ADS  Google Scholar 

  • Cane, H.V., Stone, R.G.: 1984, Type II solar radio bursts, interplanetary shocks, and energetic particle events. Astrophys. J. 282, 339 – 344. doi: 10.1086/162207 .

    Article  ADS  Google Scholar 

  • Cane, H.V., Sheeley, N.R. Jr., Howard, R.A.: 1987, Energetic interplanetary shocks, radio emission, and coronal mass ejections. J. Geophys. Res. 92, 9869 – 9874. doi: 10.1029/JA092iA09p09869 .

    Article  ADS  Google Scholar 

  • Cantó, J., Raga, A.C., D’Alessio, P.: 2000, Analytic solutions to the problem of jets with time-dependent injection velocities. Mon. Not. Roy. Astron. Soc. 313, 656 – 662. doi: 10.1046/j.1365-8711.2000.03244.x .

    Article  ADS  Google Scholar 

  • Cantó, J., González, R.F., Raga, A.C., de Gouveia Dal Pino, E.M., Lara, A., González-Esparza, J.A.: 2005, The dynamics of velocity fluctuations in the solar wind – I. Coronal mass ejections. Mon. Not. Roy. Astron. Soc. 357, 572 – 578. doi: 10.1111/j.1365-2966.2005.08670.x .

    Article  ADS  Google Scholar 

  • Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135 – 149. doi: 10.1023/B:SOLA.0000033366.10725.a2 .

    Article  ADS  Google Scholar 

  • Cavaliere, A., Messina, A.: 1976, Propagation of blast waves. Astrophys. J. 209, 424 – 428. doi: 10.1086/154736 .

    Article  ADS  Google Scholar 

  • Chen, J.: 2001, Physics of coronal mass ejections: A new paradigm of solar eruptions. Space Sci. Rev. 95, 165 – 190.

    Article  ADS  Google Scholar 

  • Chen, J., Kunkel, V.: 2010, Temporal and physical connection between coronal mass ejections and flares. Astrophys. J. 717, 1105 – 1122. doi: 10.1088/0004-637X/717/2/1105 .

    Article  ADS  Google Scholar 

  • Cho, K.-S., Moon, Y.-J., Dryer, M., Fry, C.D., Park, Y.-D., Kim, K.-S.: 2003, A statistical comparison of interplanetary shock and CME propagation models. J. Geophys. Res. 108, 1445. doi: 10.1029/2003JA010029 .

    Article  Google Scholar 

  • Colaninno, R.C., Vourlidas, A.: 2009, First determination of the true mass of coronal mass ejections: A novel approach to using the two STEREO viewpoints. Astrophys. J. 698, 852 – 858. doi: 10.1088/0004-637X/698/1/852 .

    Article  ADS  Google Scholar 

  • Corona-Romero, P., Gonzalez-Esparza, J.A.: 2011, Numeric and analytic study of interplanetary coronal mass ejection and shock evolution: Driving, decoupling, and decaying. J. Geophys. Res. 116, 5104. doi: 10.1029/2010JA016008 .

    Article  Google Scholar 

  • Dryer, M.: 1974, Interplanetary shock waves generated by solar flares. Space Sci. Rev. 15, 403 – 468. doi: 10.1007/BF00178215 .

    Article  ADS  Google Scholar 

  • Farris, M.H., Russell, C.T.: 1994, Determining the standoff distance of the bow shock: Mach number dependence and use of models. J. Geophys. Res. 99, 17681. doi: 10.1029/94JA01020 .

    Article  ADS  Google Scholar 

  • Feng, H.Q., Wu, D.J., Chao, J.K., Lee, L.C., Lyu, L.H.: 2010, Are all leading shocks driven by magnetic clouds? J. Geophys. Res. 115, 4107. doi: 10.1029/2009JA014875 .

    Article  Google Scholar 

  • Forbes, T.G., Linker, J.A., Chen, J., Cid, C., Kóta, J., Lee, M.A., Mann, G., Mikić, Z., Potgieter, M.S., Schmidt, J.M., Siscoe, G.L., Vainio, R., Antiochos, S.K., Riley, P.: 2006, CME theory and models. Space Sci. Rev. 123, 251 – 302. doi: 10.1007/s11214-006-9019-8 .

    Article  ADS  Google Scholar 

  • Forsyth, R.J., Bothmer, V., Cid, C., Crooker, N.U., Horbury, T.S., Kecskemety, K., Klecker, B., Linker, J.A., Odstrcil, D., Reiner, M.J., Richardson, I.G., Rodriguez-Pacheco, J., Schmidt, J.M., Wimmer-Schweingruber, R.F.: 2006, ICMEs in the Inner Heliosphere: Origin, evolution and propagation effects. Report of Working Group G. Space Sci. Rev. 123, 383 – 416. doi: 10.1007/s11214-006-9022-0 .

    Article  ADS  Google Scholar 

  • González, R.F., Cantó, J.: 2002, Radio-continuum emission from shocked stellar winds in low-mass stars. Astrophys. J. 580, 459 – 467. doi: 10.1086/343037 .

    Article  ADS  Google Scholar 

  • González, R.F., Montes, G., Cantó, J., Loinard, L.: 2006, Predicted radio-continuum emission from the little Homunculus of the η Carinae nebula. Mon. Not. Roy. Astron. Soc. 373, 391 – 396. doi: 10.1111/j.1365-2966.2006.11055.x .

    Article  ADS  Google Scholar 

  • Gonzalez-Esparza, A., Aguilar-Rodriguez, E.: 2009, Speed evolution of fast CME/shocks with SOHO/LASCO, WIND/WAVES, IPS and in-situ WIND data: analysis of kilometric type-II emissions. Ann. Geophys. 27, 3957 – 3966. doi: 10.5194/angeo-27-3957-2009 .

    Article  ADS  Google Scholar 

  • González-Esparza, J.A., Jeyakumar, S.: 2007, Propagation and interaction of interplanetary transient disturbances. Numerical simulations. Adv. Space Res. 40, 1815 – 1820. doi: 10.1016/j.asr.2007.06.021 .

    Article  ADS  Google Scholar 

  • González-Esparza, J.A., Lara, A., Pérez-Tijerina, E., Santillán, A., Gopalswamy, N.: 2003a, A numerical study on the acceleration and transit time of coronal mass ejections in the interplanetary medium. J. Geophys. Res. 108, 1039. doi: 10.1029/2001JA009186 .

    Article  Google Scholar 

  • González-Esparza, J.A., Lara, A., Santillán, A., Gopalswamy, N.: 2003b, A numerical study on the evolution of CMEs and shocks in the interplanetary medium. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten, Am. Inst. Phys. Conf. Ser. 679, 206 – 209. doi: 10.1063/1.1618578 .

    Google Scholar 

  • González-Esparza, J.A., Cantó, J., González, R.F., Lara, A., Raga, A.C.: 2003c, Propagation of CMEs in the interplanetary medium: Numerical and analytical results. Adv. Space Res. 32, 513 – 518. doi: 10.1016/S0273-1177(03)00334-X .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Kaiser, M.L., Lepping, R.P., Kahler, S.W., Ogilvie, K., Berdichevsky, D., Kondo, T., Isobe, T., Akioka, M.: 1998, Origin of coronal and interplanetary shocks – A new look with WIND spacecraft data. J. Geophys. Res. 103, 307. doi: 10.1029/97JA02634 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145 – 148. doi: 10.1029/1999GL003639 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Manoharan, P.K., Howard, R.A.: 2005, An empirical model to predict the 1-AU arrival of interplanetary shocks. Adv. Space Res. 36, 2289 – 2294. doi: 10.1016/j.asr.2004.07.014 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Kaiser, M.L., Howard, R.A., Bougeret, J.L.: 2008, Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. Ann. Geophys. 26, 3033 – 3047. doi: 10.5194/angeo-26-3033-2008 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295 – 313. doi: 10.1007/s11038-008-9282-7 .

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1993, The solar flare myth. J. Geophys. Res. 98, 18937 – 18950. doi: 10.1029/93JA01896 .

    Article  ADS  Google Scholar 

  • Harrison, R.A., Davis, C.J., Eyles, C.J., Bewsher, D., Crothers, S.R., Davies, J.A., Howard, R.A., Moses, D.J., Socker, D.G., Newmark, J.S., Halain, J.-P., Defise, J.-M., Mazy, E., Rochus, P., Webb, D.F., Simnett, G.M.: 2008, First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun Earth line. Solar Phys. 247, 171 – 193. doi: 10.1007/s11207-007-9083-6 .

    Article  ADS  Google Scholar 

  • Kim, K.-H., Moon, Y.-J., Cho, K.-S.: 2007, Prediction of the 1-AU arrival times of CME-associated interplanetary shocks: Evaluation of an empirical interplanetary shock propagation model. J. Geophys. Res. 112, 5104. doi: 10.1029/2006JA011904 .

    Article  Google Scholar 

  • Knock, S.A., Cairns, I.H.: 2005, Type II radio emission predictions: Sources of coronal and interplanetary spectral structure. J. Geophys. Res. 110.

  • Lara, A., Borgazzi, A.I.: 2009, Dynamics of interplanetary CMEs and associated type II bursts. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symp. 257, 287 – 290. doi: 10.1017/S1743921309029421 .

    Google Scholar 

  • Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010a, Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett. 710, L82 – L87. doi: 10.1088/2041-8205/710/1/L82 .

    Article  ADS  Google Scholar 

  • Liu, Y., Thernisien, A., Luhmann, J.G., Vourlidas, A., Davies, J.A., Lin, R.P., Bale, S.D.: 2010b, Reconstructing coronal mass ejections with coordinated imaging and in situ observations: Global structure, kinematics, and implications for space weather forecasting. Astrophys. J. 722, 1762 – 1777. doi: 10.1088/0004-637X/722/2/1762 .

    Article  ADS  Google Scholar 

  • Maloney, S.A., Gallagher, P.T.: 2011, STEREO direct imaging of a coronal mass ejection-driven shock to 0.5 AU. Astrophys. J. Lett. 736, L5. doi: 10.1088/2041-8205/736/1/L5 .

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2006, Evolution of coronal mass ejections in the Inner Heliosphere: A study using white-light and scintillation images. Solar Phys. 235, 345 – 368. doi: 10.1007/s11207-006-0100-y .

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2010, Ooty interplanetary scintillation – Remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Solar Phys. 265, 137 – 157. doi: 10.1007/s11207-010-9593-5 .

    Article  ADS  Google Scholar 

  • Manoharan, P.K., Tokumaru, M., Pick, M., Subramanian, P., Ipavich, F.M., Schenk, K., Kaiser, M.L., Lepping, R.P., Vourlidas, A.: 2001, Coronal mass ejection of 2000 July 14 flare event: Imaging from near-Sun to Earth environment. Astrophys. J. 559, 1180 – 1189. doi: 10.1086/322332 .

    Article  ADS  Google Scholar 

  • Nakajima, H., Kawashima, S., Shinohara, N., Shiomi, Y., Enome, S., Rieger, E.: 1990, A high-speed shock wave in the impulsive phase of 1984 April 24 flare. Astrophys. J. Suppl. Ser. 73, 177 – 183. doi: 10.1086/191449 .

    Article  ADS  Google Scholar 

  • Ontiveros, V., Gonzalez-Esparza, J.A.: 2010, Geomagnetic storms caused by shocks and ICMEs. J. Geophys. Res. 115, 10244. doi: 10.1029/2010JA015471 .

    Article  Google Scholar 

  • Ontiveros, V., Vourlidas, A.: 2009, Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations. Astrophys. J. 693, 267 – 275. doi: 10.1088/0004-637X/693/1/267 .

    Article  ADS  Google Scholar 

  • Petrinec, S.M.: 2002, The location of the Earth’s bow shock. Planet. Space Sci. 50, 541 – 547. doi: 10.1016/S0032-0633(02)00033-8 .

    Article  ADS  Google Scholar 

  • Petrinec, S.M., Russell, C.T.: 1997, Hydrodynamic and MHD equations across the bow shock and along the surfaces of planetary obstacles. Space Sci. Rev. 79, 757 – 791. doi: 10.1023/A:1004938724300 .

    Article  ADS  Google Scholar 

  • Pinter, S., Dryer, M.: 1990, Conversion of piston-driven shocks from powerful solar flares to blast waves in the solar wind. Bull. Astron. Inst. Czechoslov. 41, 137 – 148.

    ADS  Google Scholar 

  • Pohjolainen, S., van Driel-Gesztelyi, L., Culhane, J.L., Manoharan, P.K., Elliott, H.A.: 2007, CME propagation characteristics from radio observations. Solar Phys. 244, 167 – 188. doi: 10.1007/s11207-007-9006-6 .

    Article  ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Bougeret, J.-L.: 2007, Coronal and interplanetary propagation of CME/shocks from radio, in situ and white-light observations. Astrophys. J. 663, 1369 – 1385. doi: 10.1086/518683 .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189 – 237. doi: 10.1007/s11207-010-9568-6 .

    Article  ADS  Google Scholar 

  • Smart, D.F., Shea, M.A.: 1985, A simplified model for timing the arrival of solar flare-initiated shocks. J. Geophys. Res. 90, 183 – 190. doi: 10.1029/JA090iA01p00183 .

    Article  ADS  Google Scholar 

  • Tappin, S.J.: 2006, The deceleration of an interplanetary transient from the Sun to 5 AU. Solar Phys. 233, 233 – 248. doi: 10.1007/s11207-006-2065-2 .

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A.M., Vršnak, B., Rybák, J., Gömöry, P., Stoiser, S., Maričić, D.: 2008, Acceleration in fast halo CMEs and synchronized flare HXR bursts. Astrophys. J. Lett. 673, L95 – L98. doi: 10.1086/527414 .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Ontiveros, V.: 2009, A review of coronagraphic observations of shocks driven by coronal mass ejections. In: Ao, X., Burrows, G.Z.R. (eds.) American Institute of Physics Conference Series 1183, 139 – 146. doi: 10.1063/1.3266770 .

    Google Scholar 

  • Vourlidas, A., Subramanian, P., Dere, K.P., Howard, R.A.: 2000, Large-angle spectrometric coronagraph measurements of the energetics of coronal mass ejections. Astrophys. J. 534, 456 – 467. doi: 10.1086/308747 .

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2006, Forces governing coronal mass ejections. Adv. Space Res. 38, 431 – 440. doi: 10.1016/j.asr.2005.03.090 .

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2008, Processes and mechanisms governing the initiation and propagation of CMEs. Ann. Geophys. 26, 3089 – 3101. doi: 10.5194/angeo-26-3089-2008 .

    Article  ADS  Google Scholar 

  • Vršnak, B., Gopalswamy, N.: 2002, Influence of the aerodynamic drag on the motion of interplanetary ejecta. J. Geophys. Res. 107, 1019. doi: 10.1029/2001JA000120 .

    Article  Google Scholar 

  • Vršnak, B., Ruzdjak, V., Zlobec, P., Aurass, H.: 1995, Ignition of MHD shocks associated with solar flares. Solar Phys. 158, 331 – 351. doi: 10.1007/BF00795667 .

    ADS  Google Scholar 

  • Webb, D.F., Gopalswamy, N.: 2006, Coronal mass ejections and space weather. In: Gopalswamy, N., Bhattacharyya, A. (eds.) Proceedings of the ILWS Workshop, 71.

    Google Scholar 

  • Webb, D.F., Biesecker, D., Howard, T.A., Luhmann, J.G., Li, Y., Galvin, A., Howard, R.A., Jackson, B.V.: 2009a, CMEs in the heliosphere observed with combined imaging and in-situ data from LASCO, Stereo and SMEI. In: AAS/Solar Physics Division Meeting 40, #21.02.

    Google Scholar 

  • Webb, D.F., Howard, T.A., Fry, C.D., Kuchar, T.A., Odstrcil, D., Jackson, B.V., Bisi, M.M., Harrison, R.A., Morrill, J.S., Howard, R.A., Johnston, J.C.: 2009b, Study of CME propagation in the Inner Heliosphere: SOHO LASCO, SMEI and STEREO HI observations of the January 2007 events. Solar Phys. 256, 239 – 267. doi: 10.1007/s11207-009-9351-8 .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P.: 2006, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649, 1100 – 1109. doi: 10.1086/506903 .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Vourlidas, A.: 2004, A study of the kinematic evolution of coronal mass ejections. Astrophys. J. 604, 420 – 432. doi: 10.1086/381725 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

P. Corona-Romero thanks CONACyT for the doctoral grant. J.A. Gonzalez-Esparza thanks for partial funding by projects DGAPA-PAPIIT (IN105310) and CONACyT (152471). E. Aguilar-Rodriguez thanks DGAPA-PAPIIT project (grant IN109112) and CONACyT project (grant 101625). The authors want to thank the referee, whose comments helped to significantly improve the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Corona-Romero.

Additional information

Observations and Modelling of the Inner Heliosphere

Guest Editors: Mario M. Bisi, Richard A. Harrison and Noé Lugaz

Appendix

Appendix

1.1 A.1 Polytropic MHD Jump Relations

Polytropic MHD jump relations are the specific jump relations used in this work; for a more general solution see Petrinec and Russell (1997), Equations (14), (15) and (16). The downstream variables (subindex 2) are related with their upstream counterparts (subindex 1) according to

(19)
(20)
(21)

In Equations (19), (20) and (21) we have used

To obtain Equations (19), (20) and (21) we assume that the normal to the shock is radial at the shock front.

1.2 A.2 Velocity Coplanarity

The velocity coplanarity is commonly used to approximate the shock velocity by applying the mass conservation at the shock reference frame. If a shock wave propagates with a velocity v sh through an ambient solar wind with density ρ 1 and velocity v 1, the shock wave velocity shall fulfil ρ 1(v shv 1)=ρ 2(v shv 2), where the subindex 2 indicates the downstream values. Thus, solving for v sh:

$$ \mathbf{v}_{\mathrm{sh}} = \frac{\rho_2\mathbf{v}_2 - \rho_1\mathbf{v}_1}{\rho_2 - \rho_1} . $$
(22)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corona-Romero, P., Gonzalez-Esparza, J.A. & Aguilar-Rodriguez, E. Propagation of Fast Coronal Mass Ejections and Shock Waves Associated with Type II Radio-Burst Emission: An Analytic Study. Sol Phys 285, 391–410 (2013). https://doi.org/10.1007/s11207-012-0103-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0103-9

Keywords

Navigation