Skip to main content
Log in

Parameter identification for the Hermite Ornstein–Uhlenbeck process

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

By using the analysis on Wiener chaos, we study the behavior of the quadratic variations of the Hermite Ornstein–Uhlenbeck process, which is the solution to the Langevin equation driven by a Hermite process. We apply our results to the identification of the Hurst parameter of the Hermite Ornstein–Uhlenbeck process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bardet J-M, Tudor CA (2010) A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter. Stoch Process Appl 120(120):2331–2362

    Article  MathSciNet  Google Scholar 

  • Bonaccorsi S, Tudor CA (2011) Dissipative stochastic evolution equations driven by general Gaussian and non-Gaussian noise. J Dyn Differ Equ 23(4):791–816

    Article  MathSciNet  Google Scholar 

  • Breuer P, Major P (1983) Central limit theorem for non-linear functionals of Gaussian fields. J Mult Anal 13:425–441

    Article  Google Scholar 

  • Cheridito P, Kawaguchi H, Maejima M (2003) Fractional Ornstein–Uhlenbeck processes. Electron J Probab 8, paper 3:1–14

  • Chronopoulou A, Tudor CA, Viens F (2011) Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes. Commun Stoch Anal 5(1):161–185

    MathSciNet  MATH  Google Scholar 

  • Coupek P (2018) Limiting measure and stationarity of solutions to stochastic evolution equations with Volterra noise. Stoch Anal Appl 36(3):393–412

    Article  MathSciNet  Google Scholar 

  • Coupek P, Maslowski B (2017) Stochastic evolution equations with Volterra noise. Stoch Proc Appl 127:877–900

    Article  MathSciNet  Google Scholar 

  • Coupek P, Maslowski B, Ondrejat M (2018) \(Lp\)-valued stochastic convolution integral driven by Volterra noise. Stoch Dyn 18(6):1850048

    Article  MathSciNet  Google Scholar 

  • Gairing J, Imkeller P, Shevchebko R, Tudor CA (2019) Hurst index estimation in stochastic differential equations driven by fractional Brownian motion. J Theor Probab. https://doi.org/10.1007/s10959-019-00925-w

    Article  Google Scholar 

  • Gubinelli M, Imkeller P, Perkowski N (2016) A Fourier analytic approach to pathwise stochastic integration. Electron J Probab 21, paper no. 2

  • Maejima M, Tudor CA (2007) Wiener Integrals with respect to the Hermite process and a non-central limit theorem. Stoch Anal Appl 25(5):1043–1056

    Article  MathSciNet  Google Scholar 

  • Nourdin I, Peccati G (2012) Normal approximations with Malliavin calculus from Stein’s method to universality. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nourdin I, Tran D (2017) Statistical inference for Vasicek-type model driven by Hermite processes. Stoch Process Appl 129(10):3774–3791

    Article  MathSciNet  Google Scholar 

  • Nualart D (2006) Malliavin calculus and related topics, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Pipiras V, Taqqu M (2017) Long-range dependence and self-similarity. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Samorodnitsky G (2016) Stochastic processes and long range dependence. Springer series in operations research and financial engineering. Springer, Cham

    Book  Google Scholar 

  • Slaoui M, Tudor CA (2018) Limit behaviour of the Rosenblatt Ornstein–Uhlenbeck process with respect to the Hurst index. Theory Probab Appl 98:173–187

    Google Scholar 

  • Slaoui M, Tudor CA (2019a) Behavior with respect to the Hurst index of the Wiener Hermite integrals and application to SPDEs. J Math Anal Appl 479(1):350–383

  • Slaoui M, Tudor CA (2019b) The linear stochastic heat equation with Hermite noise. Infin Dimens Anal Quantum Probab Relat Top 22(3):1950022

  • Tran TTD (2017) Non-central limit theorems for quadratic functionals of Hermite-driven long-memory moving-average processes. Stoch Dyn 18(4):1850028

    Article  MathSciNet  Google Scholar 

  • Tudor CA (2013) Analysis of variations for self-similar processes. A stochastic calculus approach. Probability and its applications. Springer, Cham

    Google Scholar 

  • Tudor CA, Viens F (2008) Variations and estimators through Malliavin calculus. Ann Probab 37(6):2093–2134

    Article  Google Scholar 

Download references

Acknowledgements

C. T. acknowledges partial support from the Labex CEMPI (ANR-11-LABX-0007-01) and MATHAMSUD project SARC (19-MATH-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian A. Tudor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Multiple stochastic integrals

Appendix: Multiple stochastic integrals

Here, we shall only recall some elementary facts; our main reference is Nualart (2006). Consider \({\mathcal {H}}\) a real separable infinite-dimensional Hilbert space with its associated inner product \({\langle .,.\rangle }_{\mathcal {H}}\), and \((B (\varphi ), \varphi \in {\mathcal {H}})\) an isonormal Gaussian process on a probability space \((\Omega , {\mathfrak {F}}, \mathbb {P})\), which is a centered Gaussian family of random variables such that \(\mathbf {E}\left( B(\varphi ) B(\psi ) \right) = {\langle \varphi , \psi \rangle }_{{\mathcal {H}}}\), for every \(\varphi ,\psi \in {\mathcal {H}}\). Denote by \(I_{q}\) the qth multiple stochastic integral with respect to B. This \(I_{q}\) is actually an isometry between the Hilbert space \({\mathcal {H}}^{\odot q}\) (symmetric tensor product) equipped with the scaled norm \(\frac{1}{\sqrt{q!}}\Vert \cdot \Vert _{{\mathcal {H}}^{\otimes q}}\) and the Wiener chaos of order q, which is defined as the closed linear span of the random variables \(H_{q}(B(\varphi ))\) where \(\varphi \in {\mathcal {H}},\;\Vert \varphi \Vert _{{\mathcal {H}}}=1\) and \(H_{q}\) is the Hermite polynomial of degree \(q\ge 1\) defined by:

$$\begin{aligned} H_{q}(x)=(-1)^{q} \exp \left( \frac{x^{2}}{2} \right) \frac{{\mathrm {d}}^{q} }{{\mathrm {d}x}^{q}}\left( \exp \left( -\frac{x^{2}}{2}\right) \right) ,\;x\in \mathbb {R}. \end{aligned}$$
(46)

The isometry of multiple integrals can be written as: for \(p,\;q\ge 1\), \(f\in {{\mathcal {H}}^{\otimes p}}\) and \(g\in {{\mathcal {H}}^{\otimes q}}\),

$$\begin{aligned} \mathbf {E}\Big (I_{p}(f) I_{q}(g) \Big )= \left\{ \begin{array}{ll} q! \langle \tilde{f},\tilde{g} \rangle _{{\mathcal {H}}^{\otimes q}}&{}\quad \text{ if }\;p=q\\ 0 &{}\quad \text{ otherwise } \end{array}\right. \end{aligned}$$
(47)

where \(\tilde{f} \) denotes the canonical symmetrization of f and it is defined by:

$$\begin{aligned} \tilde{f} (x_{1}, \ldots , x_{q}) =\frac{1}{q!}\sum _{\sigma \in \mathcal {S}_q} f(x_{\sigma (1) },\ldots , x_{\sigma (q)}), \end{aligned}$$

in which the sum runs over all permutations \(\sigma \) of \(\{1,\ldots ,q\}\). It also holds that:

$$\begin{aligned} I_{q}(f) = I_{q}\big ( \tilde{f}\big ). \end{aligned}$$

In the particular case when \(\mathcal {H}=L^2(T, \mathcal {B}(T), \mu )\) , the rth contraction \(f\otimes _{r}g\) is the element of \({\mathcal {H}}^{\otimes (p+q-2r)}\), which is defined by:

$$\begin{aligned}&(f\otimes _{r} g) ( s_{1}, \ldots , s_{p-r}, t_{1}, \ldots , t_{q-r}) \nonumber \\&=\int _{T ^{r} }\mathrm {d}u_{1}\ldots \mathrm {d}u_{r} f( s_{1}, \ldots , s_{p-r}, u_{1}, \ldots ,u_{r})g(t_{1}, \ldots , t_{q-r},u_{1}, \ldots ,u_{r}), \end{aligned}$$
(48)

for every \(f\in L^2(T^p)\), \(g\in L^2(T^q)\) and \(r=1,\ldots ,p\wedge q\). The \(f\tilde{\otimes }_{l}g\) we denote the symmetrization of the contraction \(f\otimes _{l}g\).

The product for two multiple integrals can be expanded into a sum of multiple integrals [see Nualart (2006)]: if \(f\in L^{2}(T^{n})\) and \(g\in L^{2}(T^{m})\) are symmetric functions, then it holds that

$$\begin{aligned} I_{n}(f)I_{m}(g)=\sum _{l=0}^{m\wedge n}l!C_{m}^{l}C_{n}^{l}I_{m+n-2l}(f\otimes _{l}g). \end{aligned}$$
(49)

Another useful property of finite sums of multiple integrals is the hypercontractivity. Namely, if \(F= \sum _{k=0} ^{n} I_{k}(f_{k}) \) with \(f_{k}\in \mathcal {H} ^{\otimes k}\) then

$$\begin{aligned} \mathbf {E}\vert F \vert ^{p} \le C_{p} \left( \mathbf {E}F ^{2} \right) ^{\frac{p}{2}}. \end{aligned}$$
(50)

for every \(p\ge 2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assaad, O., Tudor, C.A. Parameter identification for the Hermite Ornstein–Uhlenbeck process. Stat Inference Stoch Process 23, 251–270 (2020). https://doi.org/10.1007/s11203-020-09219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-020-09219-z

Keywords

Mathematics Subject Classification

Navigation