Skip to main content
Log in

Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

We study the least squares estimator for the drift parameter of the Langevin stochastic equation driven by the Rosenblatt process. Using the techniques of the Malliavin calculus and the stochastic integration with respect to the Rosenblatt process, we analyze the consistency and the asymptotic distribution of this estimator. We also introduce alternative estimators, which can be simulated, and we study their asymptotic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajja S, Es-Sebaiy K, Viitasaari L (2017) Least squares estimator of fractional Ornstein Uhlenbeck processes with periodic mean. J Korean Stat Soc 46(4):608–622

    Article  MathSciNet  Google Scholar 

  • Cheridito P, Kawaguchi H, Maejima M (2003) Fractional Ornstein–Uhlenbeck processes. Electron J Probab 8:1–14 (paper 3)

    Article  MathSciNet  Google Scholar 

  • Dehling H, Franke B, Woerner JHC (2017) Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean. Stat Inference Stoch Process 20:1–14

    Article  MathSciNet  Google Scholar 

  • Fox R, Taqqu MS (1987) Multiple stochastic integrals with dependent integrators. J Multivar Anal 21:105–127

    Article  MathSciNet  Google Scholar 

  • Franke B, Kott T (2013) Parameter estimation for the drift of a time-inhomogenous jump diffusion process. Stat Neerl 13:175–192

    Google Scholar 

  • Hu Y, Nualart D (2010) Parameter estimation for fractional Ornstein Uhlenbeck processes. Stat Probab Lett 80:1030–1038

    Article  MathSciNet  Google Scholar 

  • Hu Y, Nualart D, Zhou H (2019) Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter. Stat Inference Stoch Process 22(1):111–142

    Article  MathSciNet  Google Scholar 

  • Kleptsyna M, Le Breton A (2002) Statistical analysis of the fractional Ornstein–Uhlenbeck type process. Stat Inference Stoch Process 5:229–241

    Article  MathSciNet  Google Scholar 

  • Kloeden P, Neuenkirch A (2007) The pathwise convergence of approximation schemes for stochastic differential equations. LMS J Comput Math 10:235–253

    Article  MathSciNet  Google Scholar 

  • Kutoyants YA (2004) Statistical inference for ergodic diffusion processes. Springer series in statistics. Springer, Berlin

    Google Scholar 

  • Maejima M, Tudor CA (2007) Wiener integrals with respect to the Hermite process and a non-central limit theorem. Stoch Anal Appl 25(5):1043–1056

    Article  MathSciNet  Google Scholar 

  • Nualart D (2006) Malliavin calculus and related topics, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Nourdin I, Peccati G (2012) Normal approximations with Malliavin calculus from Stein’s method to universality. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nourdin I, Tran T (2017) Statistical inference for Vasicek-type model driven by Hermite processes. Stoch Process Appl (Preprint)

  • Pipiras V, Taqqu M (2017) Long-range dependence and self-similarity. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Prakasa Rao BLS (2010) Statistical inference for fractional diffusion processes. Wiley series in probability and statistics. Wiley, Chichester

    Google Scholar 

  • Slaoui M, Tudor CA (2018) Limit behaviour of the Rosenblatt Ornstein–Uhlenbeck process with respect to the Hurst index. Theory Probab Appl 98:173–187

    Google Scholar 

  • Tudor CA (2008) Analysis of the Rosenblatt process. ESAIM Probab Stat 12:230–257

    Article  MathSciNet  Google Scholar 

  • Tudor CA (2013) Analysis of variations for self-similar processes. A stochastic calculus approach. Probability and its applications (New York). Springer, Cham

    Google Scholar 

  • Tudor CA, Viens F (2007) Statistical aspects of the fractional stochastic calculus. Ann Stat 35(3):1183–1212

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

R.S. was supported by the Collaborative Research Center ’Statistical modeling of non-linear dynamic processes’ (SFB 823) as well as by the Research Training Group RTG 2131 ’High dimensional Phenomena in Probability—Fluctuations and Discontinuity’. C. T. acknowledges partial support from the Labex CEMPI (ANR-11-LABX-0007-01) and MATHAMSUD Project SARC (19-MATH-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian A. Tudor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The basics of the Malliavin calculus

Appendix: The basics of the Malliavin calculus

Here we present the tools from Malliavin calculus needed throughout the paper. See Nualart (2006) or Nourdin and Peccati (2012) for more details.

1.1 Multiple Wiener–Itô integrals

Let \((B_{t})_{t\in [0, T]}\) be a Brownian motion defined on a probability space \(\left( \Omega ,\mathcal {F},\mathbb {P}\right) \). For a deterministic function \(h\in L^{2}\left( [0,T]\right) \), the Wiener integral \( \int _{0}^{T} h\left( s\right) dB\left( s\right) \) is also denoted by B(h) . The inner product \(\int _{0}^{T} f\left( s\right) g\left( s\right) ds\) will be denoted by \(\left\langle f,g\right\rangle _{L^{2}\left( [0,T]\right) }\).

For every \(q\ge 1\), \({\mathcal {H} }^{B}_{q}\) denotes the qth Wiener chaos of B, defined as the closed linear subspace of \(L^{2}(\Omega )\) generated by the random variables \( \{H_{q}(B(h)),h\in L ^{2}([0, T]),\Vert h\Vert _{L ^{2} ([0,T])}=1\}\) where \( H_{q}\) is the qth Hermite polynomial \(H_{q}(x)=\frac{(-1) ^ {q}}{q!} e ^ {-\frac{x^ {2}}{2}}\frac{d}{x^ {n}}(e ^ {\frac{ x ^ {2}}{2}}).\)

The mapping \({I_{q}(h^{\otimes q}):}=q!H_{q}(B(h))\) can be extended to a linear isometry between \(L^{2}_{s}(\mathbb {R}^{q})\) the space of symmetric square integrable functions of \([0,T]^{q}\) (equipped with the modified norm \({ \sqrt{q!}}\Vert .\Vert _{L^{2}([0,T]^{q})}\)) and \(\mathcal {H}^{B}_{q}\) . When \(f \in L^{2}([0,T]^{q})\), the random variable \({ I_{q}(f)}\) can be interpreted as a multiple Wiener–Itô integral of f of order q w.r.t. B and in this case, we write :

$$\begin{aligned} I_{q}(f) = \int _{[0,T]^{q}} f(y_{1},\ldots ,y_{q}) dB _{y_{1}}\ldots dB_{y_{q}}. \end{aligned}$$
(35)

From the many properties of multiple Wiener–Itô integrals we recall now two that we will need in our study. The first one is the isometry property, which states that for every \(f \in L^{2}_{s}([0,T]^{q})\), \(g\in L^{2}_{s}([0,T]^{p})\), with \(p,q \ge 1\), the following holds:

$$\begin{aligned} \mathbf {E}\left[ I_{q}(f)I_{p}(g)\right] = {\left\{ \begin{array}{ll} p! \times \big \langle f, g \big \rangle _{L^2([0,T]^{p})} \qquad &{}\text {if }\quad p=q,\\ 0 \qquad \qquad \qquad \quad \quad &{}\text {if }\quad p \ne q. \end{array}\right. } \end{aligned}$$
(36)

The second one is the hypercontractivity property which states that for \(f \in L^{2}_{s}([0,T]^{q})\), \(q\ge 1\), the multiple Wiener–Itô integral \(I_{q}(f)\) satisfies a hypercontractivity property (equivalence in \(\mathcal {H}^{B}_{q}\) of all \(L^{p}(\Omega )\) norms for all \(p\ge 2\)), which implies that for any \(F\in \oplus _{l=1}^{q}\mathcal {H}^{B}_{l}\) (i.e. in a fixed sum of Wiener chaoses), we have

$$\begin{aligned} \left( \mathbf {E}\big [|F|^{p}\big ]\right) ^{1/p}\leqslant c_{p,q}\left( \mathbf {E}\big [|F|^{2} \big ]\right) ^{1/2}\ \text{ for } \text{ any } p\ge 2. \end{aligned}$$
(37)

It should be noted that the constants \(c_{p,q}\) above are known with some precision when F is a single chaos term: indeed, by Corollary 2.8.14 in Nourdin and Peccati (2012), \(c_{p,q}=\left( p-1\right) ^{q/2}\).

1.2 Malliavin derivative

Let \((B_{t})_{t \in [0, T]} \) be a Wiener process and let \(\mathcal {S}\) be the class of smooth functionals of the form

$$\begin{aligned} F= f( B_{t_{1}},\ldots , B_{t_{n}}), \quad t_{1},\ldots , t_{n} \in [0, T], \end{aligned}$$
(38)

with \(f \in C^{\infty } (\mathbb {R} ^{n})\) with at most polynomial growth (for f and its derivatives). For the random variable (38) we define its Malliavin derivative with respect to B by

$$\begin{aligned} D_{t}F= \sum _{i=1}^{n} \frac{\partial f}{\partial x_{i}} ( B_{t_{1}},\ldots , B_{t_{n}})1_{[0, t_{i}] } (t), t \in (0, T]. \end{aligned}$$

The operator D is an unbounded closable operator and it can be extended to the closure of \(\mathcal {S} \) with respect to the norm

$$\begin{aligned} \Vert F\Vert _{k, p} ^{p} = \mathbf {E} \vert F \vert ^{p} +\sum _{j=1} ^{k} \mathbf {E} \Vert D ^{(j)} F \Vert ^{p} _{ L ^{2} ([0, T] ^{j})}, \quad F\in \mathcal {S}, p\ge 2, k\ge 1, \end{aligned}$$

denoted by \(\mathbb D^{k,\,p}\).

We denote by \(D^{(j)}\) the jth iterated Malliavin derivative. The Skorohod integral integral, denoted by \(\delta \), is the adjoint operator of D. Its domain is

$$\begin{aligned} Dom (\delta )= \left\{ u \in L ^{2} \left( [0, T]\times \Omega \right) , \mathbf {E} \left| \int _{0} ^{T} u_{s} D_{s}F ds \right| \le C \Vert F\Vert _{2} \right\} \end{aligned}$$

and we have the duality relationship

$$\begin{aligned} \mathbf {E} F \delta (u)= \mathbf {E} \int _{0} ^{T} D_{s}F u_{s} ds , \quad F \in \mathcal {S}, u\in Dom (\delta ). \end{aligned}$$

We set \(\mathbb {L} ^{k,p} = L^{p} ([0, T]; \mathbb {D} ^{k, p}), k\ge 1, p\ge 2\). This set is a subset of \(\mathrm{Dom}(\delta )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, R., Tudor, C.A. Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean. Stat Inference Stoch Process 23, 227–247 (2020). https://doi.org/10.1007/s11203-019-09200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-019-09200-5

Keywords

Mathematics Subject Classification

Navigation