Skip to main content
Log in

Time-changed fractional Ornstein-Uhlenbeck process

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We define a time-changed fractional Ornstein-Uhlenbeck process by composing a fractional Ornstein-Uhlenbeck process with the inverse of a subordinator. Properties of the moments of such process are investigated and the existence of the density is shown. We also provide a generalized Fokker-Planck equation for the density of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Anh, A. Inoue, Financial markets with memory I: Dynamic models. Stoch. Anal. Appl. 23, No 2 (2005), 275–300; DOI: 10.1081/SAP-200050096.

    MathSciNet  MATH  Google Scholar 

  2. G. Ascione, Y. Mishura, E. Pirozzi, A fractional Ornstein-Uhlenbeck process with a stochastic forcing term and its applications. Methodol. Comput. Appl. (2019), 1–32; DOI: 10.1007/s11009-019-09748-y.

    Google Scholar 

  3. G. Ascione, E. Pirozzi, On a stochastic neuronal model integrating correlated inputs. Math. Biosci. Eng. 16, No 5 (2019), 5206–5225; DOI: 10.3934/mbe.2019260.

    MathSciNet  Google Scholar 

  4. G. Ascione, E. Pirozzi, B. Toaldo, On the exit time from open sets of some semi-Markov processes. To appear in. Ann. Appl. Probab. (2019), arXiv:1709.06333.

    Google Scholar 

  5. G. Ascione, B. Toaldo, A semi-Markov leaky integrate-and-fire model. Mathematics 7 (2019); DOI: 10.3390/math7111022.

  6. J. Bertoin, Lévy Processes. Cambridge University Press, Cambridge (1996).

    MATH  Google Scholar 

  7. J. Bertoin, Subordinators: Examples and Applications. Springer, Berlin (1999).

    MATH  Google Scholar 

  8. A. Brouste, S.M. Iacus, Parameter estimation from the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package. Computation. Stat. 28, No 4 (2013), 1529–1547; DOI: 10.1007/s00180-012-0365-6.

    MATH  Google Scholar 

  9. Y.A. Butko, Chernoff approximation for semigroups generated by killed Feller processes and Feynman formulae for time-fractional Fokker–Planck–Kolmogorov equations. Fract. Calc. Appl. Anal. 21, No 5 (2018), 1203–1237; DOI: 10.1515/fca-2018-0065; https://www.degruyter.com/view/j/fca.2018.21.issue-5/issue-files/fca.2018.21.issue-5.xml.

    MathSciNet  MATH  Google Scholar 

  10. D.O. Cahoy, F. Polito, Parameter estimation for fractional birth and fractional death processes. Stat. Comput. 24, No 2 (2014), 211–222; DOI: 10.1007/s11222-012-9365-1.

    MathSciNet  MATH  Google Scholar 

  11. D.O. Cahoy, F. Polito, V. Phoha, Transient behavior of fractional queues and related processes. Methodol. Comput. Appl. 17, No 4 (2015), 739–759; DOI: 10.1007/s11009-013-9391-2.

    MathSciNet  MATH  Google Scholar 

  12. P. Cheridito, H. Kawaguchi, M. Maejima, Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab. 8 (2003), 3–14; DOI: 10.1214/EJP.v8-125.

    MathSciNet  MATH  Google Scholar 

  13. E. Cinlar, Markov additive processes and semi-regeneration. Technical Report, North-Western University, Center of Mathematical Studies in Economics and Management Science (1974).

    MATH  Google Scholar 

  14. M. Delorme, K.J. Wiese, Maximum of a fractional Brownian motion: Analytic results from perturbation theory. Phys. Rev. Lett. 115, No 21 (2015); DOI: 10.1103/PhysRevLett.115.210601.

    Google Scholar 

  15. M. D’Ovidio, S. Vitali, V. Sposini, O. Sliusarenko, P. Paradisi, G. Castellani, G. Pagnini, Centre-of-mass like superposition of Ornstein–Uhlenbeck processes: A pathway to non-autonomous stochastic differential equations and to fractional diffusion. Fract. Calc. Appl. Anal. 21, No 5 (2018), 1420–1435; DOI: 10.1515/fca-2018-0074; https://www.degruyter.com/view/j/fca.2018.21.issue-5/issue-files/fca.2018.21.issue-5.xml.

    MathSciNet  MATH  Google Scholar 

  16. J. Gajda, A. Wyłomańska, Fokker-Planck type equations associated with fractional Borniwn motion controlled by infinitely divisible processes. Physica A 405 (2014), 104–113; DOI: 10.1016/j.physa.2014.03.16.

    MathSciNet  MATH  Google Scholar 

  17. J. Gajda, A. Wyłomańska, Time-changed Ornstein-Uhlenbeck process. J. Phys. A–Math. Theor. 48, No 13 (2015); DOI: 10.1088/1751-8113/48/13/135004.

    Google Scholar 

  18. J. Gatheral, T. Jaisson, M. Rosenbaum, Volatility is rough. Quant. Financ. 18, No 6 (2018), 933–949; DOI: 10.1080/14697688.2017.1393551.

    MathSciNet  MATH  Google Scholar 

  19. H. Gu, J.R. Liang, Y.X. Zhang, Time-changed geometric fractional Brownian motion and option pricing with transaction costs. Physica A 405, No 15 (2012), 3971–3977; DOI: 10.1016/j.physa.2012.03.020.

    Google Scholar 

  20. Z. Guo, H. Yuan, Pricing European option under the time-changed mixed Brownian-fractional Brownian model. Physica A 406 (2014), 73–79; DOI: 10.1016/j.physa.2014.03.032.

    MathSciNet  MATH  Google Scholar 

  21. M.G. Hahn, K. Kobayashi, J. Ryvkina, S. Umarov, On time-changed Gaussian processes and their associated Fokker-Planck Kolmogorov equations. Electron. Commun. Prob. 16 (2011), 150–164; DOI: 10.1214/ECP.v16-1620.

    MathSciNet  MATH  Google Scholar 

  22. Y. Hu, D. Nualart, Parameter estimation from fractional Ornstein-Uhlenbeck processes. Stat. Probabil. Lett. 80, No 11-12 (2010), 1030–1038; DOI: 10.1016/j.spl.2010.02.018.

    MATH  Google Scholar 

  23. J. Janssen, R. Manca, Semi-Markov Risk Models for Finance, Insurance and Reliability. Springer Science & Business Media (2007).

    MATH  Google Scholar 

  24. J.H. Jeon, A. V. Chechkin, R. Metzler, First passage behavior of multi-dimensional fractional Brownian motion and application to reaction phenomena. In: First-Passage Phenomena and Their Applications, World Scientific, (2014), 175–202.

    Google Scholar 

  25. A. Kukush, Y. Mishura, K. Ralchenko, Hypothesis testing of the drift parameter sign for fractional Ornstein-Uhlenbeck process. Electron. J. Stat. 11, No 1 (2017), 385–400; DOI: 10.1214/17-EJS1237.

    MathSciNet  MATH  Google Scholar 

  26. A. Kumar, J. Gajda, A. Wyłomańska, R. Poloczanski, Fractional Brownian motion delayed by tempered and inverse tempered stable subordinators. Methodol. Comput. Appl. 21, No 1 (2019), 185–202; DOI: 10.1007/s11009-018-9648-x.

    MathSciNet  MATH  Google Scholar 

  27. C. Lefèvre, M. Simon, SIR epidemics with stage of infection. Adv. Appl. Probab. 48, No 3 (2016), 768–791; DOI: 10.1017/apr.2016.27.

    MathSciNet  MATH  Google Scholar 

  28. N.N. Leonenko, M.M. Meerschaert, A. Sikorskii, Fractional Pearson diffusions. J. Math. Anal. Appl. 403, No 2 (2013), 532–546; DOI: 10.1016/j.jmaa.2013.02.046.

    MathSciNet  MATH  Google Scholar 

  29. N.N. Leonenko, M.M. Meerschaert, A. Sikorskii, Correlation structure of fractional Pearson diffusions. Comput. Math. Appl. 66, No 5 (2013), 737–745; DOI: 10.1016/j.camwa.2013.01.009.

    MathSciNet  MATH  Google Scholar 

  30. X. Li, K. Zheng, Y. Yang, A simulation platform of DDoS attach based on network processor. 2008 International Conference on Computational Intelligence and Security, IEEE (2008), 421–426.

    Google Scholar 

  31. M.M. Meerschaert, E. Nane, P. Vellaisamy, Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379, No 1 (2011), 216–228; DOI: 10.1016/j.jmaa.2010.12.056.

    MathSciNet  MATH  Google Scholar 

  32. M.M. Meerschaert, H.P. Scheffler, Triangular array limits for continuous time random walks. Stoc. Proc. Appl. 118, No 9 (2008), 1606–1633; DOI: 10.1016/j.spa.2007.10.005.

    MathSciNet  MATH  Google Scholar 

  33. M.M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus. Walter de Gruyter, Berlin (2011).

    MATH  Google Scholar 

  34. M.M. Meerschaert, P. Straka, Inverse stable subordinators. Math. Model. Nat. Pheno. 8, No 2 (2013), 1–16; DOI: 10.1051/mmnp/20138201.

    MathSciNet  MATH  Google Scholar 

  35. M.M. Meerschaert, B. Toaldo, Relaxation patterns and semi-Markov dynamics. Stoc. Proc. Appl. 129 (2018); DOI: 10.1016/j.spa.2018.08.004.

  36. J.B. Mijena, Correlation structure of time-changed fractional Brownian motion. ArXiv preprint (2014), arxiv:1408.4502.

    Google Scholar 

  37. Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, Berlin (2008).

    MATH  Google Scholar 

  38. Y. Mishura, V.I. Piterbarg, K. Ralchenko, A. Yurchenko-Tytarenko, Stochastic representation and pathwise properties of fractional Cox-Ingersoll-Ross process. Theory Probab. Math. Stat. 97 (2018), 157–170; DOI: 10.1090/tpms/1055.

    MathSciNet  MATH  Google Scholar 

  39. Y. Mishura, A. Yurchenko-Tytarenko, Fractional Cox-Ingersoll-Ross process with non-zero mean. Mod. Stoch. Theory Appl. 5 (2018), 99–111; DOI: 10.15559/18-VMSTA97.

    MathSciNet  MATH  Google Scholar 

  40. W. Rudin, Real and Complex Analysis. McGraw-Hill, (2006).

    MATH  Google Scholar 

  41. Y. Sakai, S. Funahashi, S. Shinomoto, Temporally correlated inputs to Leaky Integrate-and-Fire models can reproduce spiking statistics of cortical neurons. Neural Networks 12, No 7–8 (1999), 1181–1190; DOI: 10.1016/s0893-6080(99)00053-2.

    Google Scholar 

  42. R.L. Schilling, R. Song, Z. Vondracek, Bernstein Functions: Theory and Applications. Walter de Gruyter, Berlin (2012).

    MATH  Google Scholar 

  43. S. Shinomoto, Y. Sakai, S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Comput. 11, No 4 (1999), 935–951; DOI: 10.1162/089976699300016511.

    Google Scholar 

  44. J.A. Tenreiro Machado, V. Kiryakova, The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20, No 2 (2017), 307–336; DOI: 10.1515/fca-2017-0017; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.

    MathSciNet  MATH  Google Scholar 

  45. B. Toaldo, Convolution-type derivatives, hitting-times of subordinators and time-changed C0-semigroups. Potential Anal. 42, No 1 (2015), 115–140; DOI: 10.1007/s11118-014-9426-5.

    MathSciNet  MATH  Google Scholar 

  46. A. Weron, M. Magdziarz, Anomalous diffusion and semimartingales. Europhys. Lett. 86, No 6 (2009); DOI: 10.1209/0295-5075/86/60010.

    Google Scholar 

  47. A. Wolfgang, J.K.B. Charles, H. Matthias, N. Frank, Vector-Valued Laplace Transform and Cauchy Problems. Birkhuser, Basel (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Ascione.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ascione, G., Mishura, Y. & Pirozzi, E. Time-changed fractional Ornstein-Uhlenbeck process. Fract Calc Appl Anal 23, 450–483 (2020). https://doi.org/10.1515/fca-2020-0022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0022

MSC 2010

Key Words and Phrases

Navigation