Skip to main content

Advertisement

Log in

A ‘Semantic’ View of Scientific Models for Science Education

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

In this paper I inspect a ‘semantic’ view of scientific models taken from contemporary philosophy of science—I draw upon the so-called ‘semanticist family’, which frontally challenges the received, syntactic conception of scientific theories. I argue that a semantic view may be of use both for science education in the classrooms of all educational levels, and for research and innovation within the discipline of didactics of science. I explore and characterise a model-based account of the nature of science, and derive some implications that may be of interest for our community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For instance, in the very influential Project 2061 of the American Association for the Advancement of Science, models (defined as “tentative schemes or structures that correspond to real objects, events, or classes of events, and that have explanatory power”) are given a paramount role. This centrality of models is echoed in a vast number of curriculum documents in the US and many other countries.

  2. For an introduction to these and other ‘semanticist’ authors, see Downes (1992), Suppe (2000) and Newton-Smith 2001 [in English], Díez and Moulines (1999) and Lorenzano (2003) [in Spanish].

  3. See Suppe (2000), Lorenzano (2003).

  4. I am grateful to an anonymous reviewer of this paper for suggesting the inclusion of this terminology of ‘input’ and ‘output’, which I find quite appealing.

  5. This distinction can also be rephrased, in a highly technical manner, using the Latin-like terms modelandum (the [passive] thing that is to be modelled) and modelans (the [active] thing that models).

  6. Confront with the technical definition of model in the on-line Oxford Dictionary as “a simplified description, especially a mathematical one, of a system or process, to assist calculations and predictions”.

  7. For a canonical presentation, discussion, and critique of this syntactic approach to the analysis of scientific theories, see Suppe (2000).

  8. See Izquierdo-Aymerich (2000), Develaki (2007), Koponen (2007), Sensevy et al. (2008).

  9. In English, there are traces of both meanings in some derived words: for instance, modal (“relating to a mode/manner”) and modular (“based on a module/measure”).

  10. This is indeed a central point of discussion in the philosophical production of semanticist nature, as portrayed in the on-going debate between Ron Giere (proposing ‘constructive realism’) and Bas van Fraassen (proposing ‘constructive empiricism’). For further details around this rather complex matter, which goes far beyond the scope of my paper, see Diéguez Lucena (1998), Chakravartty (2001).

  11. This phrase, of course, should not be taken to imply that I do not recognise the existence of many other recent and current schools in the philosophy of science. See Estany (1993) and Echeverría (1995) (in Spanish), Rosenberg (2000) and Ladyman (2002) (in English) for comprehensive and accessible presentations of contemporary trends in the philosophy of science. It can also be pointed out that the semanticist family—the school chosen for this paper—and all other up-to-date philosophies of science are almost completely absent in didactics of science.

  12. See Estany (1993) and Díez and Moulines (1999) (in Spanish), Newton-Smith (2000) and Frigg (2006) (in English) for presentations—of various degrees of complexity—of the similarities and differences between these three authors.

  13. It can be contended that these praxic and ‘enactive’ aspects of a model are not very well developed by the semantic conception. As an anonymous reviewer of this paper pointed out, the overemphasis on representation may constitute a weak side of this view of scientific models—at least in academic philosophy of science—(cf., Knuuttila and Voutilainen 2003).

  14. The amount of literature around this topic is huge. See, for instance, Gilbert and Boulter (2000), Greca and Moreira (2000), Erduran and Duschl (2004), Halloun (2004, 2007), Schwarz and White (2005), Schwarz et al. (2009), Khan (2007), Sensevy et al. (2008) (in English), Moreira et al. (2002), Gallego Badillo (2004), Gutiérrez (2004) and Izquierdo-Aymerich (2004) (in Spanish).

  15. As indicated by an anonymous reviewer of this paper, the fact that the verb ‘model’ and the noun ‘modelling’ are used with such amplitude in science education is, for philosophical considerations, rather worrying, but, at the same time, serves as a clear indication of the importance allotted to those ideas in the new science curricula and practices.

References

  • Adúriz-Bravo, A. (2001). Integración de la epistemología en la formación del profesorado de ciencias. Ph.D. Dissertation. Universitat Autònoma de Barcelona, Bellaterra (Online).

  • Adúriz-Bravo, A. (2005). Una introducción a la naturaleza de la ciencia: La epistemología en la enseñanza de las ciencias naturales. Buenos Aires: Fondo de Cultura Económica.

  • Adúriz-Bravo, A. (2008). ¿Existirá el “método científico”? In L. Galagovsky (Ed.), ¿Qué tienen de ‘naturales’las ciencias naturales? (pp. 47–59). Buenos Aires: Biblos.

  • Adúriz-Bravo, A. (2010). Hacia una Didáctica de las Ciencias Experimentales Basada en Modelos. In L. Álvarez, R. Rickenmann, & J. Vallès (Eds.), II Congrés Internacional de Didàctiques: Llibre d’Actes, CD-ROM, nº 248. Girona: Universitat de Girona.

    Google Scholar 

  • Adúriz-Bravo, A. (2011). Concepto de modelo científico: Una mirada epistemológica de su evolución. In L. Galagovsky (Ed.), Didáctica de las ciencias naturales: El caso de los modelos científicos (pp. 141–161). Buenos Aires: Lugar Editorial.

  • Adúriz-Bravo, A., Garófalo, J., Greco, M., & Galagovsky, L. (2005). El Modelo Didáctico Analógico: Marco teórico y ejemplos. Enseñanza de las Ciencias, extra issue, Symposium 4, Paper 2 (Online).

  • Chakravartty, A. (2001). The semantic or model-theoretic view of theories and scientific realism. Synthese, 127(3), 325–345.

    Article  Google Scholar 

  • Chamizo, J. A. (2006). Los Modelos de la Química. Educación Química, 17, 476–482.

    Google Scholar 

  • Chamizo, J. A. (2010). Una Tipología de los Modelos para la Enseñanza de las Ciencias. Revista Eureka de Enseñanza y Divulgación de las Ciencias, 7(1), 26–41.

    Google Scholar 

  • Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041–1053.

    Article  Google Scholar 

  • Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16(7), 725–749.

    Article  Google Scholar 

  • Diéguez Lucena, A. (1998). Realismo Científico: Una Introducción al Debate Actual en la Filosofía de la Ciencia. Málaga: Universidad de Málaga.

    Google Scholar 

  • Díez, J. A. & Moulines, U. (1999). Fundamentos de Filosofía de la Ciencia (2nd ed.). Barcelona: Ariel.

  • Downes, S. M. (1992). The importance of models in theorizing: A deflationary semantic view. PSA: Proceedings of the biennial meeting of the philosophy of science association (Vol. 1, pp. 142–153).

  • Echeverría, J. (1995). Filosofía de la Ciencia. Madrid: Akal.

    Google Scholar 

  • Erduran, S., & Duschl, R. (2004). Interdisciplinary characterizations of models and the nature of chemical knowledge in the classroom. Studies in Science Education, 40, 111–144.

    Article  Google Scholar 

  • Estany, A. (1993). Introducción a la Filosofía de la Ciencia. Barcelona: Crítica.

    Google Scholar 

  • French, S., & Ladyman, J. (1999). Reinflating the semantic approach. International Studies in the Philosophy of Science, 13(2), 103–121.

    Article  Google Scholar 

  • Frigg, R. (2006). Scientific representation and the semantic view of theories. Theoria, 55, 49–65.

    Google Scholar 

  • Galagovsky, L. (Ed.). (2008). ¿Qué Tienen de “Naturales” las Ciencias Naturales?. Buenos Aires: Biblos.

    Google Scholar 

  • Gallego Badillo, R. (2004). Un Concepto Epistemológico de Modelo para la Didáctica de las Ciencias Experimentales. Revista Electrónica de Enseñanza de las Ciencias 3, 3 (On line).

    Google Scholar 

  • Giere, R. N. (1988). Explaining science: A cognitive approach. Minneapolis: University of Minnesota Press.

    Book  Google Scholar 

  • Giere, R. (1999a). Del realismo constructivo al realismo perspectivo. Enseñanza de las Ciencias, número extra (pp. 9–13).

  • Giere, R. (1999b). Un nuevo marco para enseñar el razonamiento científico. Enseñanza de las Ciencias, número extra (pp. 63–70).

  • Gilbert, J., & Boulter, C. (Eds.). (2000). Developing models in science education. Dordrecht: Kluwer.

    Google Scholar 

  • Gobert, J., O’Dwyer, L., Horwitz, P., Buckley, B., Levy, S. T., & Wilensky, U. (2011). Examining the relationship between students’ epistemologies of models and conceptual learning in three science domains: Biology, physics, and chemistry. International Journal of Science Education, 33(5), 653–684.

    Article  Google Scholar 

  • Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1–11.

    Article  Google Scholar 

  • Guerrero Pino, G. (2000). Determinismo, Modelos y Modalidades. Revista de Filosofía, Tercera Época XIII(24), 191–216.

  • Gutiérrez, R. (2004). La modelización y los procesos de enseñanza/aprendizaje. Alambique, 42, 8–18.

    Google Scholar 

  • Gutiérrez, R. (2005). Polisemia Actual del Concepto “Modelo Mental”: Consecuencias para la Investigación Didáctica. Investigações em Ensino de Ciências 10(2), 209–226 (On line).

  • Halloun, I. A. (2004). Modeling theory in science education. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Halloun, I. A. (2007). Mediated modeling in science education. Science & Education, 16, 653–697.

    Article  Google Scholar 

  • Herfel, W., Krajewski, W., Niiniluoto, I., & Wójcicki, R. (Eds.). (1995). Theories and models in scientific processes (Poznań Studies in the Philosophy of the Sciences and Humanities) (Vol. 44). Amsterdam: Rodopi.

    Google Scholar 

  • Islas, S. M. & Pesa, M. (2004). Estudio Comparativo sobre Concepciones de Modelo Científico Detectadas en Física. Ciencia, Docencia y Tecnología XV(29), 117–144.

  • Izquierdo-Aymerich, M. (2000). Fundamentos Epistemológicos. In F. J. Perales & P. Cañal (Eds.), Didáctica de las Ciencias Experimentales: Teoría y Práctica de la Enseñanza de las Ciencias (pp. 35–64). Alcoy: Marfil.

    Google Scholar 

  • Izquierdo-Aymerich, M. (2004). Un Nuevo Enfoque de la Enseñanza de la Química: Contextualizar y Modelizar. The Journal of the Argentine Chemical Society, 92(4–6), 115–136.

    Google Scholar 

  • Izquierdo-Aymerich, M. (2007). Enseñar Ciencias, una Nueva Ciencia. Enseñanza de las Ciencias Sociales, 6, 125–138.

    Google Scholar 

  • Izquierdo-Aymerich, M. & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science & Education, 12(1), 27–43.

    Google Scholar 

  • Joshua, S., & Dupin, J.-J. (1993). Introduction à la Didactique des Sciences et des Mathématiques. Paris: PUF.

    Google Scholar 

  • Justi, R. (2006). La Enseñanza de Ciencias Basada en la Elaboración de Modelos. Enseñanza de las Ciencias, 24(2), 173–184.

    Google Scholar 

  • Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91, 877–905.

    Article  Google Scholar 

  • Khine, M. S., & Saleh, I. M. (Eds.). (2011). Models and modelling: Cognitive tools for scientific enquiry. Dordrecht: Springer.

    Google Scholar 

  • Knuuttila, T. & Voutilainen, A. (2003). A parser as an epistemic artefact: A material view on models. Philosophy of Science 70, 1484–1495.

    Google Scholar 

  • Koponen, I. T. (2007). Models and modelling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16(7–8), 751–773.

    Article  Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: The University of Chicago Press.

    Google Scholar 

  • Ladyman, J. (2002). Understanding philosophy of science. London: Routledge.

    Google Scholar 

  • Lombardi, O. (1998). La Noción de Modelo en Ciencias. Educación en Ciencias, 2(4), 5–13.

    Google Scholar 

  • Lorenzano, P. (2001). La Teorización Filosófica sobre la Ciencia en el Siglo XX. Boletín de la Biblioteca del Congreso de la Nación 121, 29–43.

  • Lorenzano, P. (2003). ¿Debe Ser Excluida la Concepción Estructuralista de las Teorías de la Familia Semanticista?: Una Crítica a la Posición de Frederick Suppe. Epistemología e Historia de la Ciencia, 9(9), 282–290.

    Google Scholar 

  • Lorenzano, P. (2008). Inconmensurabilidad teórica y comparabilidad empírica: El caso de la genética clásica. Bernal: Documento interno, UNQui.

    Google Scholar 

  • Magnani, L., Nersessian, N. J., & Thagard, P. (Eds.). (1999). Model-based reasoning in scientific discovery. New York: Kluwer Academic, Plenum Press.

    Google Scholar 

  • Miguel, H. (1999). La Analogía como Herramienta en la Generación de Ideas Previas. El Caldero de la Escuela, 73, 85–97.

    Google Scholar 

  • Moreira, M. A., Greca, I. M., & Rodríguez Palmero, M. L. (2002). Modelos mentales y modelos conceptuales en la enseñanza y aprendizaje de las ciencias. Revista Brasileira de Pesquisa em Educação em Ciências, 2(3), 37–57.

    Google Scholar 

  • Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: perspective on natural and social science (pp. 10–37). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Mosterín, J. (1984). Conceptos y Teorías en la Ciencia. Madrid: Alianza Editorial.

    Google Scholar 

  • Moulines, U. (1982). Exploraciones Metacientíficas: Estructura, Desarrollo y Contenido de la Ciencia. Madrid: Alianza Editorial.

    Google Scholar 

  • Newton-Smith, W. H. (Ed.). (2000). A companion to the philosophy of science. Oxford: Blackwell.

    Google Scholar 

  • Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109–1130.

    Article  Google Scholar 

  • Popper, K. R. (1972). Objective knowledge: An evolutionary approach. Oxford: Clarendon Press.

    Google Scholar 

  • Rosenberg, A. (2000). Philosophy of science: A contemporary introduction. London: Routledge.

    Google Scholar 

  • Rouse, J. (1998). New philosophies of science in North America: Twenty years later. Journal for General Philosophy of Science (Zeitschrift für Allgemeine Wissenschaftstheorie), 29(1), 122–711.

    Google Scholar 

  • Schwarz, C. V., & White, B. (2005). Meta-modeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205.

    Article  Google Scholar 

  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., et al. (2009). Designing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654.

    Article  Google Scholar 

  • Sensevy, G., Tiberghien, A., Santini, J., Laubé, S., & Griggs, P. (2008). An epistemological approach to modeling: Cases studies and implications for science teaching. Science Education, 92(3), 424–446.

    Article  Google Scholar 

  • Stewart, J., Cartier, J., & Passmore, C. (2005). Developing understanding through model-based inquiry. In M. S. Donovan & J. D. Bransford (Eds.), How students learn: Science in the classroom (pp. 515–565). Washington: The National Academies Press.

    Google Scholar 

  • Suppe, F. (2000). Understanding scientific theories: An assessment of developments, 1969–1998. Philosophy of Science 67, S102–S115 (Proceedings).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Adúriz-Bravo.

About this article

Cite this article

Adúriz-Bravo, A. A ‘Semantic’ View of Scientific Models for Science Education. Sci & Educ 22, 1593–1611 (2013). https://doi.org/10.1007/s11191-011-9431-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-011-9431-7

Keywords

Navigation