Skip to main content

Advertisement

Log in

Why Implementing History and Philosophy in School Science Education is a Challenge: An Analysis of Obstacles

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

Teaching and learning with history and philosophy of science (HPS) has been, and continues to be, supported by science educators. While science education standards documents in many countries also stress the importance of teaching and learning with HPS, the approach still suffers from ineffective implementation in school science teaching. In order to better understand this problem, an analysis of the obstacles of implementing HPS into classrooms was undertaken. The obstacles taken into account were structured in four groups: 1. culture of teaching physics, 2. teachers’ skills, epistemological and didactical attitudes and beliefs, 3. institutional framework of science teaching, and 4. textbooks as fundamental didactical support. Implications for more effective implementation of HPS are presented, taking the social nature of educational systems into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Reports on national conferences cited here have been thankfully provided by P. Brenni (Fondazione Scienza e Tecnica, Florence, Italy), D. Höttecke (University of Bremen, Germany), I. Galili (Hebrew University of Jerusalem, Israel), R. Coelho (University of Lisbon, Portugal) and J. Turlo (University of Torun, Poland).

  2. The gap is unavoidable but not unsolvable, as illustrated by projects carried on in different continents addressing HPS in a fashion that science teachers, science teacher educators, and historians of science find valuable. For instance, see HIPST project carried on in Europe (http://hipst.eled.auth.gr); Resource Center for science teachers using Sociology, History and Philosophy of Science (http://www1.umn.edu/ships/), The Story Behind the Science (http://www.storybehindthescience.org) carried on in United States.

References

  • AAAS (American Association for the Advancement of Science). (1990). Science for All Americans. Project 2061. New York, Oxford: Oxford University Press.

    Google Scholar 

  • Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82(4), 417–436.

    Article  Google Scholar 

  • Abd-El-Khalick, F., Waters, M., & Le, A.-P. (2008). Representations of nature of science in high school chemistry textbooks over the past four decades. Journal of Research in Science Teaching, 45(7), 835–855.

    Article  Google Scholar 

  • Abel, M. (2006). Transferstrategien und Transfermaßnahmen im Schulprogramm “Chemie im Kontext—CHiK”. In R. Nickolaus & C. Gräsel (Eds.), Innovation und Transfer. Expertisen zur Transferforschung (pp. 421–444). Hohengehren: Schneider Verlag.

    Google Scholar 

  • Abell, S. K., & Smith, D. C. (1992). What is science? Preservice elementary teachers’ conceptions of the nature of science. In S. Hills (ed.), The hstory and philosophy of science education. Proceedings of the second international conference on the history and philosophy of science and science teaching (Vol.1, pp. 11–22). Kingston, Ontario: The Mathematics, Science, Technology and Teacher Education Group and The Faculty of Education Queen’s, University.

  • Adúriz-Bravo, A., Izquierdo, M., & Estany, A. (2002). Una Propuesta para Estructurar la Enseñanza de la Filosofía de la Ciencia para el Profesorado de Ciencias en Formación. (A proposal for structuring the teaching of philosophy of science to pre-service science teachers). Enseñanza de las Ciencias: Revista de Investigación y Experiencias Didácticas, 20(3), 465–476.

    Google Scholar 

  • Aguirre, J. M., Haggerty, S. M., & Linder, C. J. (1990). Student-teachers’ conceptions of science, teaching and learning: A case study in preservice science education. International Journal of Science Education, 12(4), 381–390.

    Article  Google Scholar 

  • Aikenhead, G. S. (2003). Review of research on humanistic perspectives in science curricula. Paper presented at the meeting of the ESERA, 19–23 August, Noordwijkerhout, The Netherlands. Retrieved from http://www.usask.ca/education/people/aikenhead/ESERA_2.pdf (05.01.2010).

  • Akerson, V. L., Abd-El-Khalick, F., & Lederman, N. G. (2000). Influence of a reflective explicit activity-based approach on elementary teachers’ conceptions of nature of science. Journal of Research in Science Teaching, 37(4), 295–317.

    Article  Google Scholar 

  • Allchin, D. (1997a). The power of history as a tool for teaching science. In A. Dally, T. Nielsen & F. Rieß (Eds.), Geschichte und Theorie der Naturwissenschaften im Unterricht. Ein Weg zur naturwissenschaftlich-technischen Alphabetisierung? (pp. 70–98), Reihe Loccumer Protokolle 53/96.

  • Allchin, D. (1997b). Rekindling Phlogiston: From classroom case study to interdisciplinary relationships. Science & Education, 6, 473–509.

    Article  Google Scholar 

  • Allchin, D. (2004). Pseudohistory and pseudoscience. Science & Education, 13, 179–195.

    Article  Google Scholar 

  • Barth, M. (2000). Electromagnetic induction rediscovered using original texts. Science & Education, 9(4), 375–387.

    Article  Google Scholar 

  • Bartholomew, H., Osborne, J. F., & Ratcliffe, M. (2004). Teaching students ideas-about-science: Five dimensions of effective practice. Science Education, 88, 655–682.

    Article  Google Scholar 

  • BouJaoude, S., Sowwan, S., & Abd-El-Khalick, F. (2003) The effect of using drama in science teaching on students’ conceptions of nature of science. Paper presented on The ESERA 2003 Conference Research and the Quality of Science Education, Retrieved from http://www1.phys.uu.nl/esera2003/programme/pdf%5C039S.pdf (10.06.2008).

  • Brasil: 2002, Ministério da Educação e Cultura. PCNs + Ensino Médio: orientações educacionais complementares aos Parâmetros Curriculares Nacionais. Ciências da Natureza, Matemática e suas Tecnologias. Brasília, 2002.

  • Brickhouse, N., & Bodner, G. M. (1992). The beginning science teacher: Classroom narratives of convictions and constraints. Journal of Research in Science Teaching, 29(5), 471–485.

    Article  Google Scholar 

  • Clough, M. P. (2006). Learners’ responses to the demands of conceptual change: Considerations for effective nature of science instruction. Science & Education, 15(5), 463–494.

    Article  Google Scholar 

  • Clough, M. P. (2009). Humanizing science to improve post-secondary science education. Paper presented at the 10th International History, Philosophy of Science in Science Teaching (IHPST) Conference, Notre Dame, IN, June 24–28.

  • Clough, M. P., Herman, B. C., Kruse, J. W., & Kerton, C. (2009). Instructor and student response to the use of historical short stories in an introductory post-secondary astronomy course. Paper presented at the 10th International History, Philosophy of Science in Science Teaching (IHPST) Conference, Notre Dame, IN, June 24–28.

  • de Berg, K. C. (2005) Writing historical case studies for science students which give due consideration to teaching-learning issues and nature of science perspectives. Online-proceedings of the 8th international history and philosophy of science and science teaching conference in leeds, 2005, http://www.ihpst2005.leeds.ac.uk/papers/Deberg.pdf (01.11.2007).

  • de Pagliarini, C. R., & Silva, C.C. (2007). History and nature of science in Brazilian physics textbooks: Some findings and perspectives. Paper presented at the Ninth International History, Philosophy, Sociology & Science Teaching Conference (IHPST), Calgary, Canada 2007, June 28–31, 2007. Retrieved from http://www.ucalgary.ca/ihpst07/proceedings/IHPST07%20papers/2122%20Silva.pdf (05.03.2008).

  • Dedes, C. (2005). The mechanism of vision: Conceptual similarities between historical models and children’s representations. Science & Education, 14(7–8), 699–712.

    Article  Google Scholar 

  • Dedes, C., & Ravanis, K. (2008). History of science and conceptual change: The formation of shadows by extended lights sources. Science & Education, 18(9), 1135–1151.

    Article  Google Scholar 

  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argument in classrooms. Science Education, 84(3), 287–312.

    Article  Google Scholar 

  • Eilks, I., Parchmann, I., Gräsel, C., & Ralle, B. (2004). Changing teachers’ attitudes and professional skills by involving teachers into projects of curriculum innovation in Germany. In B. Ralle & I. Eilks (Eds.), Quality in practice oriented research in science education (pp. 29–40). Shaker: Aachen.

    Google Scholar 

  • Fernández, I., Gil, D., Carrascosa, J., Cachapuz, A., & Praia, J. (2002). Visiones Deformadas de la Ciencia Transmitidas por la Enseñanza (Distorted views conveyed by teaching). Enseñaza de las Ciencias, 20(3), 477–488.

    Google Scholar 

  • Fischler, H. (2000). Über den Einfluß von Unterrichtserfahrungen auf die Vorstellungen vom Lehren und Lernen bei Lehrerstudenten der Physik. Teil 2: Ergebnisse der Untersuchung (About the influence of pre-service physics teachers’ teaching experiences on their beliefs about teaching and learning. Part 2: Results of the investigation). Zeitschrift für Didaktik der Naturwissenschaften, 6, 79–95.

    Google Scholar 

  • Forato, T. C. de M. (2009). A Natureza da Ciência como Saber Escolar: Um Estudo de Caso a partir da História da Luz. (Nature of science as school knowledge: A case study from history of light) Tese de Doutorado (Vol. 2). São Paulo: FEUSP.

    Google Scholar 

  • Galili, I., & Hazan, A. (2001). The effect of a history-based course in optics on students’ views about science. Science & Education, 10, 7–32.

    Article  Google Scholar 

  • García, M. A. (2009). Aportes de la Historia de la Ciencia al Desarrollo Profesional de Profesores de Química (History of science in chemistry teachers profesional development). Tesis Doctoral. “Universidad Autónoma de Barcelona, Universidad Distrital Francisco José de Caldas”. Barcelona (España).

  • Gräsel, C., Jäger, M., & Willke, H. (2006). Konzeption einer übergreifenden Transferforschung unter Einbeziehung des internationalen Forschungsstandes. In R. Nickolaus & C. Gräsel (Eds.), Innovation und Transfer. Expertisen zur Transferforschung (pp. 445–566). Hohengehren: Schneider Verlag.

    Google Scholar 

  • Gräsel, C., & Parchmann, I. (2004). Implementationsforschung—oder: der steinige Weg, Unterricht zu verändern (Research on implementation: Problems of changing teaching and learning). Unterrichtswissenschaft, 32(3), 196–214.

    Google Scholar 

  • Heering, P. (2000). Getting shocks: Teaching secondary school physics through history. Science & Education, 9(4), 363–373.

    Article  Google Scholar 

  • Heilbron, J. L. (2002). History in science education, with cautionary tales about the agreement of measurement and theory. Science & Education, 11(4), 321–331.

    Article  Google Scholar 

  • Henke, A., Höttecke, D., & Rieß, F. (2009). Case studies for teaching and learning with history and philosophy of science: Exemplary results of the HIPST project in Germany. Paper presented at the Tenth International History, Philosophy, Sociology & Science Teaching Conference (IHPST), South Bend, USA 2009, June 24—88, 2009, Retrieved from http://www.nd.edu/~ihpst09/papers/Henke_MS.pdf (07.01.2010).

  • Hericks, U., & Körber, A. (2007). Methodologische Perspektiven quantitativer und rekonstruktiver Fachkulturforschung in der Schule. In J. Lüders (Ed.), Fachkulturforschung in der Schule (pp. 31–48). Opladen u.a: Verlag Barbara Budrich.

    Google Scholar 

  • Hoffman, L., Häußler, P., & Lehrke, M. (1998). Die IPN-Interessenstudie Physik. Kiel: IPN.

    Google Scholar 

  • Höttecke, D. (2000). How and what can we learn from replicating historical experiments? A case study. Science & Education, 9(4), 343–362.

    Article  Google Scholar 

  • Höttecke, D. (2001). Die Natur der Naturwissenschaften historisch verstehen. Fachdidaktische und wissenschaftshistorische Untersuchungen (Understanding the nature of science historically. Didactical and historical investigations). Berlin: Logos-Verlag.

    Google Scholar 

  • Höttecke, D. (2008). Was ist Naturwissenschaft? Physikunterricht über die Natur der Naturwissenschaften (What does science mean? The nature of science in physics education). Naturwissenschaften im Unterricht Physik, 19(issue 103), 4–11.

    Google Scholar 

  • Höttecke, D., & Rieß, F. (2007). How do physics teacher students understand the nature of science? An explorative study of a well informed investigational group. Paper presented at the Ninth International History, Philosophy, Sociology & Science Teaching Conference (IHPST), Calgary, Canada 2007, June 28–31, 2007. Retrieved from: http://www.ucalgary.ca/ihpst07/proceedings/IHPST07%20papers/124%20hoettecke.pdf (20.01.2008).

  • Höttecke, D., & Rieß, F. (2009). Developing and implementing case studies for teaching science with the help of history and philosophy. Framework and critical perspectives on “HIPST”A European approach for the inclusion of history and philosophy in science teaching. Paper presented at the Tenth International History, Philosophy, Sociology & Science Teaching Conference (IHPST), South Bend, USA 2009, June 24–88, 2009. Retrieved from http://www.nd.edu/~ihpst09/papers/Hoettecke_Paper_IHPST09.pdf (04.01.2010).

  • Howe, E. M., & Rudge, D. W. (2005). Recapitulating the history of sickle-cell anemia research. Science & Education, 14(3–5), 423–441.

    Article  Google Scholar 

  • Huberman, M. (1993). Linking the practitioner and researcher communities for school improvement. School Effectiveness and School Improvement, 4(1), 1–16.

    Article  Google Scholar 

  • Irez, S. (2006). Are we prepared? An assessment of preservice science teacher educators’ beliefs about nature of science. International Journal of Science Education, 90, 1113–1143.

    Google Scholar 

  • Irez, S. (2008). Nature of science as depicted in Turkish biology textbooks. Science Education, 93(3), 422–447.

    Article  Google Scholar 

  • Irwin, A. R. (2000). Historical case studies: Teaching the nature of science in context. Science Education, 84(1), 5–26.

    Article  Google Scholar 

  • Joint Board of Ministries for Culture and Education of German Federal States. (2005). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss. Beschluss vom 16.12.2004 (Standards for Science Education for school leaving-qualification—class 10). Luchterhand. Retrieved from http://physik.bildung-rp.de/fileadmin/user_upload/physik.bildung-rp.de/Bildungsstandards.pdf (29.04.2009).

  • Jones, M. G., & Carter, G. (2007). Science teacher attitudes and beliefs. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research in science education (pp. 1067–1104). New York, London: Routledge.

    Google Scholar 

  • Kessels, U., Rau, M., & Hannover, B. (2006). What goes well with physics? Measuring and altering the image of science. British Journal of Educational Psychology, 76(4), 761–780.

    Article  Google Scholar 

  • King, B. B. (1991). Beginning teachers’ knowledge of and attitudes toward history and philosophy of science. Science Education, 75(1), 135–141.

    Article  Google Scholar 

  • Klassen, S. (2009). The construction and analysis of a science story: A proposed methodology. Science & Education, 18, 401–423.

    Article  Google Scholar 

  • Kolstø, S. D. (2008). Science education for democratic citizenship through the use of the history of science. Science & Education, 17, 977–997.

    Article  Google Scholar 

  • Koulaidis, V., & Ogborn, J. (1989). Philosophy of science: An empirical study of teachers’ views. International Journal of Science Education, 11(2), 173–184.

    Article  Google Scholar 

  • Kubli, F. (1999). Historical aspects in physics teaching: Using Galileo’s work in a new swiss project. Science & Education, 8(2), 137–150.

    Article  Google Scholar 

  • Kubli, F. (2005). Science teaching as a dialogue—Bakhtin, Vygotsky and some applications in the classroom. Science & Education, 14(6), 501–534.

    Article  Google Scholar 

  • Lakin, S., & Wellington, J. (1994). Who will teach the “nature of science”?: Teachers’ views of science and their implication for science education. International Journal of Science Education, 16(2), 175–190.

    Article  Google Scholar 

  • Lederman, N. G. (1999). Teachers’ understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship. Journal of Research in Science Teaching, 36(8), 916–929.

    Article  Google Scholar 

  • Leite, L. (2002). History of science in science education: Development and validation of a checklist for analyzing the historical content of science textbooks. Science & Education, 11, 333–359.

    Article  Google Scholar 

  • Lin, H.-S., & Chen, C.-C. (2002). Promoting preservice chemistry teachers’ understanding about the nature of science through history. Journal of Research in Science Teaching, 39(9), 773–792.

    Article  Google Scholar 

  • Lindner, M. (2008). Lehrerfortbildung heute—Sind Lehrkräfte fortbildungsresistent? Erfahrungen aus den Programmen SINUS und CHiK als Modelle der Lehrerfortbildung (Professional development today—Are teachers resistant to change? Experiences based on the SINUS and CHIK programs as models for professional development). MNU, 61(3), 164–168.

    Google Scholar 

  • Mamlok-Naaman, R., Ben-Zvi, R., Hofstein, A., Menis, J., & Erduran, S. (2005). Learning science through a historical approach: Does it affect the attitudes of non-science-oriented students towards science? International Journal of Science & Math Education, 3(3), 485–507.

    Article  Google Scholar 

  • Markic, S., Valanides, N., & Eilks, I. (2006). Freshman science student teachers’ beliefs on science teaching and learning–a mixed methods study. In I. Eilks & B. Ralle (Eds.), Towards research-based science teacher education (pp. 29–40). Aachen: Shaker-Verlag.

    Google Scholar 

  • Martins, R. A. (1990). Sobre o Papel da História da Ciência no Ensino (About the role of history of science in teaching). Boletim SBHC, 9, 3–5.

    Google Scholar 

  • Martins, R. A. (2006). A maçã de Newton: história, lendas e tolices (Newton’s apple: History, tales and foolishness). In C. C. Silva (Ed.), Estudos de História e Filosofia das Ciências: Subsídios para Aplicação no Ensino. São Paulo: Editora Livraria da Física.

    Google Scholar 

  • Martins, A. F. P. (2007). História e Filosofia da Ciência no Ensino: Há Muitas Pedras Nesse Caminho… (History and philosophy of science in teaching: There are several stones in the road…). Caderno Brasileiro de Ensino de Física, 24, 112–131.

    Google Scholar 

  • Matthews, M. R. (1994). Science teaching. The role of history and philosophy of science. New York, London: Routledge.

    Google Scholar 

  • McComas, W. F. (Ed.). (2000). The nature of science in science education rationales and strategies. The Netherlands: Kluwer.

    Google Scholar 

  • McComas, W. F. (2008). Seeking historical examples to illustrate key aspects of the nature of science. Science & Education, 17, 249–263.

    Article  Google Scholar 

  • Metz, D., Klassen, S., McMillan, B., Clough, M., & Olson, J. (2007). Building a foundation for the use of historical narratives. Science & Education, 16, 313–334.

    Article  Google Scholar 

  • Millar, R., & Driver, R. (1987). Beyond processes. Studies in Science Education, 14, 33–62.

    Article  Google Scholar 

  • Monk, M., & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: A model of development of pedagogy. Science Education, 81(4), 405–425.

    Article  Google Scholar 

  • Mulhall, P., & Gunstone, R. (2008). Views about physics held by physics teachers with differing approaches to teaching physics. Research in Science Education, 38, 435–462.

    Article  Google Scholar 

  • Munby, H., Cunningham, M., & Lock, C. (2000). School science culture: A case study of barriers to developing professional knowledge. Science Education, 84(2), 193–211.

    Article  Google Scholar 

  • Ødegaard, M. (2003). Dramatic science. A critical review of drama in science education. Studies in Science Education, 39, 75–102.

    Article  Google Scholar 

  • Osborne, J. (2003). Attitude toward Science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079.

    Article  Google Scholar 

  • Osborne, J., & Collins, S. (2001). Pupils’ view of the role and value of the science curriculum: A focus-group-study. International Journal of Science Education, 23(5), 441–467.

    Article  Google Scholar 

  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.

    Article  Google Scholar 

  • Osborne, J., Duschl, R., & Fairbrother, R. (2002). Breaking the mould? Teaching science for public understanding. King’s College London. Retrieved from: http://www.kcl.ac.uk/content/1/c6/01/32/03/breaking.pdf (31.1.2007).

  • Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307–332.

    Google Scholar 

  • Palmquist, B. C., & Finley, F. N. (1997). Preservice teachers’ views of the nature of science during a postbaccalaureate-science teaching program. Journal of Research in Science Teaching, 34(6), 595–615.

    Article  Google Scholar 

  • Pocovi, M. C., & Finley, F. (2002). Lines of force: Faraday’s and students’ views. Science & Education, 11, 459–474.

    Article  Google Scholar 

  • Quintanilla, M. (Org.). (2007). Historia de la Ciencia. Propuestas para su Divulgación y Enseñanza (History of Science: Proposals for its dissemination and teaching). Editorial Arrayán, Santiago de Chile.

  • Reid, N., & Skryabina, E. A. (2003). Gender and physics. International Journal of Science Education, 25(4), 509–536.

    Article  Google Scholar 

  • Reinmann-Rothmeier, G., & Mandl, H. (1998). Wenn kreative Ansätze versanden: Implementation als verkannte Aufgabe (When creative approaches fail: Implementation as an underestimated problem). Unterrichtswissenschaft, 26(4), 292–311.

    Google Scholar 

  • Reyer, T., Trendel, G., & Fischer, H. (2004). Was kommt beim Schüler an? - Lehrerintentionen und Schülerlernen im Physikunterricht (What do students attain? Teachers’ intentions and students’ learning in physics teaching). In J. Doll & M. Prenzel (Eds.), Bildungsqualität von Schule: Lehrerprofessionalisierung, Unterrichtsentwicklung und Schülerförderung als Strategie der Qalitätsverbesserung (pp. 195–211). Münster: Waxmann.

    Google Scholar 

  • Roberts, D. A. (1982). Developing the concept of “curriculum emphases” in science education. Science Education, 66(2), 243–260.

    Article  Google Scholar 

  • Sequeira, M., & Leite, L. (1991). Alternative conceptions and history of science in physics teacher education. Science Education, 75(1), 45–56.

    Article  Google Scholar 

  • Seroglou, F., Koumaras, P., & Tselfes, V. (1998). History of science and instructional design: The case of electromagnetism. Science & Education, 7(3), 261–280.

    Article  Google Scholar 

  • Snyder, J., Bolin, F., & Jungmann, A. (1992). Curriculum implementation. In P. W. Jachson (Ed.), Handbook of research on curriculum (pp. 402–435). New York: Macmillan.

    Google Scholar 

  • Solbes, J., & Traver, M. (2003). Against a negative image of science: History of science and the teaching of physics and chemistry. Science & Education, 12, 703–717.

    Article  Google Scholar 

  • Solomon, J. (1991). Teaching about the nature of science in the British National curriculum. Science Education, 75(1), 95–103.

    Article  Google Scholar 

  • Solomon, J. (1997). Scientific culture, science education, and teaching the history of science. In A. Dally, T. Nielsen & F. Rieß (Eds.), Geschichte und Theorie der Naturwissenschaften im Unterricht. Ein Weg zur naturwissenschaftlich-technischen Alphabetisierung? Reihe Loccumer Protokolle 53/96.

  • Solomon, J., Duveen, J., Scot, L., & McCarthy, S. (1992). Teaching about the nature of science through history: Action research in the classroom. Journal of Research in Science Teaching, 29(4), 409–421.

    Article  Google Scholar 

  • Stadler, M., Ostermeier, C., & Prenzel, M. (2007). Abschlussbericht zum Programm SINUS-Transfer (Final report of the program SINUS-Transfer). Kiel: IPN, Retrieved from http://www.sinus-transfer.uni-bayreuth.de/fileadmin/MaterialienBT/Schlussbericht_ST.pdf (29.01.2010).

  • Stinner, A. (2006). The large context problem (LCP) approach. Interchange, 37(1–2), 19–30.

    Article  Google Scholar 

  • Taconis, R., & Kessels, U. (2009). How choosing science depends on students’ individual fit to ‘science culture’. International Journal of Science Education, 31(8), 1115–1132.

    Article  Google Scholar 

  • Tesch, M., & Duit, R. (2004). Experimentieren im Physikunterricht—Ergebnisse einer Videostudie (Experiments in physics education–a video study). Zeitschrift für Didaktik der Naturwissenschaften, 10, 51–69.

    Google Scholar 

  • Tsai, C.-C. (2002). Nested epistemologies: Science teachers’ beliefs of teaching, learning and science. International Journal of Science Education, 24(8), 771–783.

    Article  Google Scholar 

  • Van Driel, J., De Vos, W., & Verloop, N. (1998). Relating students’ reasoning to the history of science: The case of chemical equilibrium. Research in Science Education, 28(2), 187–198.

    Article  Google Scholar 

  • Wandersee, J. H. (1986). Can the history of science help science educators anticipate students’ misconceptions? Journal of Research in Science Teaching, 23(7), 581–597.

    Article  Google Scholar 

  • Wandersee, J. H. (1992). The historicality of cognition: Implications for science education research. Journal of Research in Science Teaching, 29(4), 423–434.

    Article  Google Scholar 

  • Wang, H., & Cox-Peterson, A. (2002). A comparison of elementary, secondary and student teachers’ perceptions and practices related to history of science instruction. Science & Education, 11, 69–81.

    Article  Google Scholar 

  • Wang, H. A., & Marsh, D. D. (2002). Science instruction with a humanistic twist teachers’ perception and practice in using the history of science in their classrooms. Science & Education, 11, 169–189.

    Article  Google Scholar 

  • Willems, K. (2007). Schulische Fachkulturen und Geschlecht. Physik und Deutsch—natürliche Gegenpole? (Subject cultures and gender. Physics and German—Natural opposites?). Bielefeld: Transcirpt-Verlag.

    Google Scholar 

  • Witz, K. G., & Hyunju, L. (2009). Science as an ideal: Teachers’ orientations to science and science education reform. Journal of Curriculum Studies, 41(3), 409–431.

    Article  Google Scholar 

  • Yerrick, R., Parke, H., & Nugent, J. (1997). Struggling to promote deeply rooted change: The “filtering effect” of teachers’ beliefs on understanding transformational views of teaching science. Science Education, 81, 137–159.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the thorough and thoughtful comments of the anonymous referees who provided helpful suggestions for improving this paper. Our work has been done within the project HIPST—History and Philosophy in Science Education which was funded by the 7th framework program of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cibelle Celestino Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höttecke, D., Silva, C.C. Why Implementing History and Philosophy in School Science Education is a Challenge: An Analysis of Obstacles. Sci & Educ 20, 293–316 (2011). https://doi.org/10.1007/s11191-010-9285-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-010-9285-4

Keywords

Navigation