Skip to main content
Log in

Electron Concentration in the Near-Surface Graded-Gap Layer of MBE n-Hg1–x Cd x Te (x = 0.22–0.40) Determined from the Capacitance Measurements of MIS-Structures

  • Published:
Russian Physics Journal Aims and scope

Capacitance-voltage (C–V) characteristics of MIS structures based on the graded-gap n-Hg1–x Cd x Te (x = 0.22–0.40) grown by molecular-beam epitaxy were experimentally studied in the temperature range of 9–77 K. The concentrations of majority charge carriers in the near-surface layer of the semiconductor are determined from the capacitance value at the minimum of the (C–V) characteristic due to the high-frequency behavior of the capacitance characteristics of the structures with graded-gap layers with respect to the recharge time of surface states. The electron concentration in the near-surface layer of the graded-gap n-Hg1–x Cd x Te at x = 0.22–0.23 in the working layer, found from the value of the capacitance at the minimum, considerably exceeds the integral electron concentration determined by the Hall method. With an increase in the composition in the working layer to x = 0.30–0.40, the difference in the values of the electron concentrations decreases substantially for the near-surface layers with close compositions on the surface. The results obtained are explained by the appearance of additional native defects of donor type in the near-surface graded-gap layer, and this effect is most clearly manifested at large composition gradients in the graded-gap layer. The results of processing of experimental C–V characteristics are in qualitative agreement with the results of studying the electron concentration distribution over the film thickness performed by the Hall method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Infrared Detectors [Russian translation], Nauka, Novosibirsk (2003).

    Google Scholar 

  2. J. Сhu and A. Sher, Device Physics of Narrow Gap Semiconductors, Springer, N. Y. (2010).

    Google Scholar 

  3. G. H. Tsau, A. Sher, M. Madou, et al., J. Appl. Phys., 59, No. 4, 1238–1244 (1986).

    Article  ADS  Google Scholar 

  4. Y. Nemirovsky and I. Bloom, J. Vac. Sci. & Technol. A, 6, No. 4, 2710–2715 (1988).

    Article  ADS  Google Scholar 

  5. V. N. Ovsyuk, G. L. Kuryshev, Yu. G. Sidorov, et al., Matrix Photodetector Devices of Infrared Range [in Russian], Nauka, Novosibirsk (2001).

    Google Scholar 

  6. E. H. Nicollian and J. R. Brews MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, N.Y. (1982).

  7. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russ. Phys. J., 52, No. 10, 1003–1020 (2009).

    Article  Google Scholar 

  8. V. N. Ovsyuk and A. V. Yartsev, Proc. SPIE, 6636, 663617–663621 (2007).

    Article  Google Scholar 

  9. V. V. Vasil’ev and Yu. P. Mashukov, Fiz. Tekh. Poluprovodn., 41, No. 1, 38–43 (2007).

    Google Scholar 

  10. D. I. Gorn, S. N. Nesmelov, A. V. Voitsekhovskii, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 51, No. 9/3, 134 (2008).

    Google Scholar 

  11. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Opto-Electron. Rev., 22, No. 4, 236–244 (2014).

    Article  ADS  Google Scholar 

  12. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Infrared Phys. Technol., 71, 236–241 (2015).

    Article  ADS  Google Scholar 

  13. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, J. Electron. Mater., 45, No. 2, 881–891 (2016).

    Article  ADS  Google Scholar 

  14. W. Van Gelder and E. H. Nicollian, J. Electrochem. Soc., 118, No. 1, 138–141 (1971).

    Article  Google Scholar 

  15. S. M. Sze and K. Ng Kwok, Physics of Semiconductor Devices, 3rd ed., Wiley, N. Y. (2007).

    Google Scholar 

  16. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russ. Phys. J., 59, No. 2, 284–294 (2016).

    Article  Google Scholar 

  17. D. R. Frankl, Solid-State Electron., 2, No. 1, 71–76 (1961).

    Article  ADS  Google Scholar 

  18. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Prikl. Fiz., No. 5, 80–86 (2011).

  19. R. Fu and J. Pattison, Opt. Eng., 51, No. 10, 104003 (1–4) (2012).

    Article  ADS  Google Scholar 

  20. P. Zhang, Z. N. Ye, C. H. Sun, et al., J. Electron. Mater., 45, No. 9, 4716–4720 (2016).

    Article  ADS  Google Scholar 

  21. V. V. Vasil’ev, A. V. Voitsekhovskii, F. N. Dul’tsev, et al., Prikl. Fiz., No. 5, 63–66 (2007).

  22. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Russ. Phys. J., 57, No. 4, 536–544 (2014).

    Article  Google Scholar 

  23. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Russ. Phys. J., 57, No. 5, 633–641 (2014).

    Article  Google Scholar 

  24. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, Russ. Phys. J., 58, No. 4, 540–551 (2015).

    Article  Google Scholar 

  25. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, Russ. Phys. J., 59, No. 7, 920–933 (2016).

    Article  Google Scholar 

  26. J. R. Lowney, D. G. Seiler, C. L. Littler, et al., J. Appl. Phys., 71, No. 3, 1253– 1258 (1992).

    Article  ADS  Google Scholar 

  27. D. G. Seiler, J. R. Lowney, C. L. Littler, et al., MRS Proceedings, Cambridge University Press, 216, 59–63 (1990).

    Google Scholar 

  28. R. Nokhwal, R. S. Saxena, B. L. Sharma, et al., Infrared Phys. Technol., 71, 378–383 (2015).

    Article  Google Scholar 

  29. M. J. Malachowski, J. Piotrowski, A. Rogalski, et al., Phys. Status Solidi A, 113, No. 2, 467–476 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 109–118, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. Electron Concentration in the Near-Surface Graded-Gap Layer of MBE n-Hg1–x Cd x Te (x = 0.22–0.40) Determined from the Capacitance Measurements of MIS-Structures. Russ Phys J 60, 128–139 (2017). https://doi.org/10.1007/s11182-017-1051-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1051-5

Keywords

Navigation