Skip to main content
Log in

Differential Resistance of Space Charge Region in MIS Structures Based on Graded-Gap MBE n-Hg1–x Cd x Te (x = 0.23) in a Wide Temperature Range

  • Published:
Russian Physics Journal Aims and scope

Total conductance of MIS structures based on heteroepitaxial n-Hg1–xCdxTe (x = 0.23) grown by molecular beam epitaxy has been studied in the temperature range 8–150 K at frequencies of alternating test signal 2 kHz – 2 MHz. It is found that for structures with a near-surface graded-gap layer and an increased content of CdTe, the differential resistance of space charge region increases significantly, as the temperature decreases from 77 to 8 K, and for structures without a graded-gap layer, the changes in the differential resistance of space charge region are nonmonotonic and relatively small. These results can be explained by the fact that at 8–77 K, for structures without graded-gap layers, the differential resistance of the space charge region is limited by tunneling via deep levels, and for structures with graded-gap layers, it is limited by the Shockley-Read generation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogal’skii, Infrared Detectors, Nauka, Novosibirsk (2003).

    Google Scholar 

  2. A. V. Voitsekhovskii and V. N. Davydov, Photoelectric MIS Structures based on Narrow-Gap Semiconductors, Radio i Svyas, Tomsk (1990).

    Google Scholar 

  3. V. N. Ovsyuk, G. L. Kuryshev, Yu. G. Sidorov, et al., Matrix Infrared Photodetectors, Nauka, Novosibirsk (2001).

    Google Scholar 

  4. A. V. Voitsekhovskii, S. N. Nesmelov, A. P. Kokhanenko, et al., Russ. Phys. J., 48, No. 2, 143–147 (2005).

    Article  Google Scholar 

  5. V. V. Vasil’ev and Yu. P. Mashukov, Fiz. Tekh. Poluprovodn., 41, No. 1, 38–43 (2007).

    Google Scholar 

  6. V. V. Vasil’ev and Yu. P. Mashukov, Prikladn. Fiz., No. 4, 106–110 (2010).

    Google Scholar 

  7. V. N. Ovsyuk and A. V. Yartsev, Proc. SPIE, 6636, 663617–663621 (2007).

    Article  Google Scholar 

  8. V. N. Ovsyuk and A. V. Yartsev, Prikladn. Fiz., No. 5, 80–83 (2007).

    Google Scholar 

  9. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Fiz. Tekh. Poluprovodn., No. 11, 1327–1332 (2008).

  10. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Opto-Electron. Rev., 18, No. 3, 259–262 (2010).

    Article  ADS  Google Scholar 

  11. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Thin Solid Films, 522, 261–266 (2012).

    Article  ADS  Google Scholar 

  12. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Thin Solid Films, 551, 92–97 (2014).

    Article  ADS  Google Scholar 

  13. M. A. Kinch, Semicond. Semimet., 18, 313–385 (1981).

    Article  Google Scholar 

  14. M. W. Goodwin, M. A. Kinch, and R. J. Koestner, J. Vac. Sci. Technol., A7, No. 2, 523–527 (1989).

    Article  ADS  Google Scholar 

  15. M. J. Yang, C. H. Yang, M. A. Kinch, and J. D. Beck, Appl. Phys. Lett., 54, No. 3, 265–267 (1989).

    Article  ADS  Google Scholar 

  16. M. Zvara, R. Grill, P. Hlidek, et al., Semicond. Sci. Tecnol., No. 10, 1145–1150 (1995).

    Article  ADS  Google Scholar 

  17. M. Zvara, R. Grill, P. Hlidek, et al., Semicond. Sci. Tecnol., No. 11, 1718–1724 (1996).

    Article  ADS  Google Scholar 

  18. W. He and Z. Celik-Butler, Solid-State Electron., 39, No. 1, 127–132 (1996).

    Article  ADS  Google Scholar 

  19. V. V. Antonov, Investigation of Electrophysical and Photoelectric Characteristics of MOS Structures based on Mercury Cadmium Telluride, Thesis Phys. And Math. Sci., Tomsk (1985).

    Google Scholar 

  20. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russ. Phys. J., 48, No. 6, 584–591 (2005).

    Article  Google Scholar 

  21. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russ. Phys. J., 52, No. 10, 1003–1020 (2009).

    Article  MATH  Google Scholar 

  22. V. I. Gaman, Physics of Semiconductor Devices, Isd. Nauchn. Tekhn. Liter., Tomsk, (2000).

    Google Scholar 

  23. R. K. Bhan and V. Dhar, Infrared Phys. Technol., 41, 155–162 (2000).

    Article  ADS  Google Scholar 

  24. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Russ. Phys. J., 55, No. 8, 910–916 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 102–109, April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.М. et al. Differential Resistance of Space Charge Region in MIS Structures Based on Graded-Gap MBE n-Hg1–x Cd x Te (x = 0.23) in a Wide Temperature Range. Russ Phys J 57, 536–544 (2014). https://doi.org/10.1007/s11182-014-0272-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-014-0272-0

Keywords

Navigation