Skip to main content
Log in

Dopant in Near-Surface Semiconductor Layers of Metal–Insulator–Semiconductor Structures Based on Graded-Gap p-Hg0.78Cd0.22Te Grown by Molecular-Beam Epitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Peculiarities in determining the dopant concentration and dopant distribution profile in the near-surface layer of a semiconductor are investigated by measuring the admittance of metal–insulator–semiconductor structures (MIS structures) based on p-Hg0.78Cd0.22Te grown by molecular beam epitaxy. The dopant concentrations in the near-surface layer of the semiconductor are determined by measuring the admittance of MIS structures in the frequency range of 50 kHz to 1 MHz. It is shown that in this frequency range, the capacitance–voltage characteristics of MIS structures based on p-Hg0.78Cd0.22Te with a near-surface graded gap layer demonstrate a high-frequency behavior with respect to the recharge time of surface states located near the Fermi level for an intrinsic semiconductor. The formation time of the inversion layer is decreased by less than two times, if a near-surface graded-gap layer is created. The dopant distribution profile in the near-surface layer of the semiconductor is found, and it is shown that for structures based on p-Hg0.78Cd0.22Te with a near-surface graded-gap layer, the dopant concentration has a minimum near the interface with the insulator. For MIS structure based on n-Hg0.78Cd0.22Te, the dopant concentration is more uniformly distributed in the near-surface layer of the semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Infrared Detectors, 2nd ed. (New York: CRC Press, 2011).

    Google Scholar 

  2. C. Fulk, W. Radford, D. Buell, J. Bangs, and K. Rybnicek, J. Electron. Mater. 44, 2977 (2015).

    Article  Google Scholar 

  3. R. Singh, A.K. Gupta, and K.C. Chhabra, Def. Sci. J. 41, 205 (2013).

    Article  Google Scholar 

  4. G.H. Tsau, A. Sher, M. Madou, J.A. Wilson, V.A. Cotton, and C.E. Jones, J. Appl. Phys. 59, 1238 (1986).

    Article  Google Scholar 

  5. Y. Nemirovsky and I. Bloom, J. Vac. Sci. Technol. A6, 2710 (1988).

    Article  Google Scholar 

  6. A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, Russ. Phys. J. 52, 1003 (2009).

    Article  Google Scholar 

  7. S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S. Ganichev, J. Electron. Mater. 39, 918 (2010).

    Article  Google Scholar 

  8. A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, Thin Solid Films 522C, 261 (2012).

    Article  Google Scholar 

  9. A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, Thin Solid Films 551, 92 (2014).

    Article  Google Scholar 

  10. A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.V. Vasil’ev, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, and M.V. Yakushev, Infrared Phys. Technol. 71, 236 (2015).

    Article  Google Scholar 

  11. A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.V. Vasil’ev, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, V.D. Kuz’min, and V.G. Remesnik, Russ. Phys. J. 57, 707 (2014).

    Article  Google Scholar 

  12. A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, Russ. Phys. J. 57, 1070 (2014).

    Article  Google Scholar 

  13. E.H. Nicollian and J.R. Brews, MOS Physics and Technology (New York: Wiley, 1982).

    Google Scholar 

  14. W. Van Gelder and E.H. Nicollian, J. Electrochem. Soc. 118, 138 (1971).

    Article  Google Scholar 

  15. J.R. Brews, J. Appl. Phys. 44, 3228 (1973).

    Article  Google Scholar 

  16. S.M. Sze, Physics of Semiconductor Devices, 3rd ed. (NewYork: Wiley, 2007).

    Google Scholar 

  17. K.D. Mynbaev and V.I. Ivanov-Omskii, Semiconductors 40, 1 (2006).

    Article  Google Scholar 

  18. I.I. Izhnin, S.A. Dvoretsky, K.D. Mynbaev, O.I. Fitsych, N.N. Mikhailov, V.S. Varavin, M. Pociask-Bialy, A.V. Voitsekhovskii, and E. Sheregii, J. Appl. Phys. 115, 163501 (2014).

    Article  Google Scholar 

  19. M. Reddy, W.A. Radford, D.D. Lofgreen, K.R. Olsson, J.M. Peterson, and S.M. Johnson, J. Electron. Mater. 43, 2991 (2014).

    Article  Google Scholar 

  20. C. Lobre, P.H. Jouneau, L. Mollard, and P. Ballet, J. Electron. Mater. 43, 2908 (2014).

    Article  Google Scholar 

  21. T. Aoki, Y. Chang, G. Badano, J. Zhao, C. Grein, S. Sivananthan, and D.J. Smith, J. Cryst. Growth 265, 224 (2004).

    Article  Google Scholar 

  22. P. Capper, C.D. Maxey, C.L. Jones, J.E. Gower, E.S. O’Keefe, and D. Shaw, J. Electron. Mater. 28, 637 (1999).

    Article  Google Scholar 

  23. M.V. Yakushev, D.V. Brunev, V.S. Varavin, A.V. Vishnyakov, S.A. Dvoretskij, A.V. Predein, and I.V. Sabinina, Infrared Phys. Technol. 69, 107 (2015).

    Article  Google Scholar 

  24. V.V. Vasilyev, A.V. Voitsekhovsky, F.N. Dultsev, T.A. Zemtsova, I.O. Parm, and A.P. Solovyev, Appl. Phys. 5, 63 (2007).

    Google Scholar 

  25. R.S. Nakhmanson, Solid-State Electron. 19, 745 (1976).

    Article  Google Scholar 

  26. M.M. Bülbül, Microelectron. Eng. 84, 124 (2007).

    Article  Google Scholar 

  27. A. Berman and D.R. Kerr, Solid-State Electron. 17, 735 (1974).

    Article  Google Scholar 

  28. M.A. Kinch, Metal–insulator–semiconductor infrared detectors.Semiconductors and Semimetals, Vol. 18, ed. R.K. Willardson and A.C. Beer (New York: Academic Press, 1981), p. 313.

    Google Scholar 

  29. A.R. LeBlanc, D.D. Kleppinger, and J.P. Walsh, J. Electrochem. Soc. 119, 1068 (1972).

    Article  Google Scholar 

  30. S.T. Lin and J. Reuter, Solid-State Electron. 26, 343 (1983).

    Article  Google Scholar 

  31. A.V. Voitsekhovskii, D.V. Grigor’ev, and N.K. Talipov, Russ. Phys. J. 51, 1001 (2008).

    Article  Google Scholar 

  32. A.V. Voitsekhovskii and A.P. Kokhanenko, Russ. Phys. J. 41, 76 (1998).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Grant (No. 8.2.10.2015) within the “The Tomsk State University Academic D.I. Mendeleev Fund Program”. This work was financially supported by the State Task No. 16.1032.2014/K. The authors are grateful to the staff of ISP SB RAS Varavin V.S., Vasil’ev V.V., Dvoretsky S.A., Mikhailov N.N., Yakushev M.V., Sidorov G.Y., and Parm I.O. for providing the MBE HgCdTe samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Nesmelov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N. & Dzyadukh, S.M. Dopant in Near-Surface Semiconductor Layers of Metal–Insulator–Semiconductor Structures Based on Graded-Gap p-Hg0.78Cd0.22Te Grown by Molecular-Beam Epitaxy. J. Electron. Mater. 45, 881–891 (2016). https://doi.org/10.1007/s11664-015-4239-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4239-x

Keywords

Navigation