Skip to main content
Log in

Gallium Nitride: Charge Neutrality Level and Interfaces

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

An analysis of experimental data revealed the dependence of the metal/n-GaN GaN(0001) barrier height on the metal work function, as predicted by the model that takes into account the charge neutrality level of the semiconductor. In case of the metal/p-GaN(Mg) barriers, significant scatter of the corresponding experimental data is observed and pinning of the near-surface Fermi level near E v + 2.5 eV takes place in most structures, which is due to the influence of high density of interface defect states formed during the process of the GaN doping by Mg impurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Brudnyi, S. N. Grinyaev, and V. E. Stepanov, Physica B, 212, 429 (1995).

    Article  ADS  Google Scholar 

  2. V. N. Brudnyi, S. N. Grinyaev, and N. G. Kolin, Physica B, 348, 213 (2004).

    Article  ADS  Google Scholar 

  3. V. N. Brudnyi, A. V. Kosobutsky, and N. G. Kolin, Semiconductors, 47, No. 10, 1271 (2009); Russ. Phys. J., 51, No. 12, 1270–1278 (2008).

  4. S. J. Pearton and A. Y. Polyakov, Int. J. Mater. Struct. Intergrity., 2, No. ½, 93 (2008).

  5. S. Chandramohan, J. H. Kang, Y. S. Katharria, et al., Appl. Phys. Lett., 100, 023502 (2012).

    Article  ADS  Google Scholar 

  6. V. M. Boiko, V. N. Brudnyi, S. S. Verevkin, et al., Semiconductors, 48, No. 7, 859 (2014).

    Article  ADS  Google Scholar 

  7. M. Grodzicki, P. Mazur, S. Zuber, et al., Mater. Sci. Poland, 32, No. 2, 252 (2014).

    ADS  Google Scholar 

  8. M. L. Lee, J. K. Sheu, and S. W. Lin, Appl. Phys. Lett., 88, 032103 (2006).

    Article  ADS  Google Scholar 

  9. A. C. Schmitz, A. T. Ping, M. A. Khan, et al., Semicond. Sci. Technol., 11, 14 (1996).

    Article  Google Scholar 

  10. S. J. Pearton, J. C. Zolper, and F. Ren, J. Appl. Phys., 86, No. 1, 1 (1999).

    Article  ADS  Google Scholar 

  11. J. S. Kwak, O. H. Nam, and Y. Park, J. Appl. Phys., 95, No. 10, 5917 (2004).

    Article  ADS  Google Scholar 

  12. S. C. Binary, H. B. Dietrich, G. Kelner, et al., Electron. Lett., 30, 909 (1994).

    Article  ADS  Google Scholar 

  13. T. V. Blank, Yu. A. Goldberg, E. E. Zavarin, et al., Semiconductors, 39, No. 6, 674 (2005).

    Article  ADS  Google Scholar 

  14. Q. Z. Liu, L. S. Yu, F. Deng, et al., J. Appl. Phys., 84, 881 (1998).

    Article  ADS  Google Scholar 

  15. V. R. Reddi, C. K. Ramesh, and C.-L Choi, Phys. Stat. Sol. (a), 203, No. 3, 622 (2006).

  16. J. Guo, M. S. Feng, R. J. Guo, et al., Appl. Phys. Lett., 67, 2657 (1995).

    Article  ADS  Google Scholar 

  17. K. Shiojima, D. T. McIntirff, J. M. Woodall, et al., J. Electron. Mater., 28, No. 3, 228 (1999).

    Article  ADS  Google Scholar 

  18. S. Verma, D. Kabiraj, T. Kumar, et al., Proc. of the 55th DAE Solid State Physics Symp., ALP Proc. 1349, 1111 (2010). (Amer. Inst. Physics 978-0-7354-0905-7/S30.00).

  19. S. Oyama, T. Hashizume, and H. Yasegawa, Appl. Surf. Sci., 190, 322 (2002).

    Article  ADS  Google Scholar 

  20. P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki, Appl. Phys. Lett., 63, 2676 (1993).

    Article  ADS  Google Scholar 

  21. K. A. Rickert, A. B. Ellis, F. J. Himpsel, et al., Appl. Phys. Lett., 80, No. 2, 204 (2002).

    Article  ADS  Google Scholar 

  22. Y. Kribes, I. Harrison, B. Tuck, et al., Semicond. Sci. Technol., 12, 913 (1997).

    Article  ADS  Google Scholar 

  23. K. A. Rickert, A. B. Ellis, J. K. Kim, et al., J. Appl. Phys., 92, 6671 (2002).

    Article  ADS  Google Scholar 

  24. C. I. Wu, A. Khan, A. E. Wickenden, et al., J. Appl. Phys., 89, 425 (2001).

    Article  ADS  Google Scholar 

  25. C. P. Chen, Y. A. Chang, J. W. Huang, and T. F. Kuech, Appl. Phys. Lett., 84, No. 11, 1413 (1994).

    Article  ADS  Google Scholar 

  26. J. K. Sheu, J. K. Su, G. C. Chi, et al., Appl. Phys. Lett., 72, No. 25, 3317 (1998).

    Article  ADS  Google Scholar 

  27. S. Kim, T. H. Seo, M. J. Kim, et al., Nano Research., 8, No. 4, 1327 (2015).

    Article  Google Scholar 

  28. C.-L. Tsai, Y.-J. Lin, and J.-H. Lin, J. Mater. Sci. Mater Electron., Springer Science Business Media, New York (2015). DOI: 10.1007/s10854015-2796-7.

  29. K. M. Tracy, P. J. Hartlieb, S. Einfeldt, et al., J. Appl. Phys., 94, No. 6, 3939 (2003).

    Article  ADS  Google Scholar 

  30. L. S. Voss, Doctor of Philosophy Dissertation “Thermally Stable Ohmic and Schottky Contacts to GaN”, University of Florida, USA (2008).

    Google Scholar 

  31. R. Khanna, Doctor of Philosophy Dissertation “Development of High Temperature Stable Omhic and Schottky Contacts to n-GaN”, University of Florida, USA (2007).

    Google Scholar 

  32. C. M. Jeon and J. L. Lee, J. Appl. Phys., 95, No. 2, 698 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  33. L. S. Yu, L. Jia, P. Qiao, et al., IEEE Trans. Electron Devices, 50, No. 2, 292 (2003).

    Article  ADS  Google Scholar 

  34. L. S. Yu, P. Qiao, L. Jia, et al., Appl. Phys. Lett., 79, 4536 (2001).

    Article  ADS  Google Scholar 

  35. Kenji Shiojima, Tomoya Sugahara, and Shiro Sakai, Appl. Phys. Lett., 74, 1936 (1999).

    Article  ADS  Google Scholar 

  36. Lin Yow-Jon, You Chang-Feng, and Lee Chi-Sen, J. Appl. Phys., 99, 053706 (2006).

    Article  ADS  Google Scholar 

  37. Lin Yow-Jon and Hsu Chou Wei, J. Electron. Mater, 33, No. 9, 1036 (2004).

  38. L. Wang, W. Liu, Y. Zhang, et al., Nano Energy, 12, 419 (2015).

    Article  Google Scholar 

  39. M. Grodzicki, P. Mazur, J. Pers, et al., Acta Phys. Polonica A, 126, 1128 (2014).

    Article  Google Scholar 

  40. P. J. Hartlieb, A. Roskowski, R. F. Davis, et al., J. Appl. Phys, 91, No. 2, 732 (2002).

    Article  ADS  Google Scholar 

  41. T. Mori, T. Kozawa, T. Ohwaki, et al., Appl. Phys. Lett., 69, 3537 (1996).

    Article  ADS  Google Scholar 

  42. C. R. Tan, A. Abdul Aziz, and F. K. Jam, Appl. Semicond. Sci, 252, 5930 (2006).

    ADS  Google Scholar 

  43. D. L. Hibbard, R. W. Chuang, Y. S. Zhao, et al., J. Electron. Mater, 29, No. 3, 291 (2000).

    Article  ADS  Google Scholar 

  44. J. Robertson and B. J. Falabretti, Appl. Phys, 100, 014111 (2006).

    Article  Google Scholar 

  45. M. Monch, Phys. Rev. Lett., 58, 1260 (1987).

    Article  ADS  Google Scholar 

  46. CRC Handbook of Chemistry and Physics, 85th edn, ed. D. R. Lide, CRC Press (2004).

  47. S. Tongay, M. Lemaiyre, X. Miao, et al., Phys. Rev. X, 2, 011002 (2012).

    Google Scholar 

  48. H. Zhong, K. Xu, Z. Liu, et al., J. Appl. Phys, 115, 013701 (2014).

    Article  ADS  Google Scholar 

  49. S. Kim, J. M. Lee, D. H. Lee, and W. I. Park, Thin Solid Films, 546, 246 (2013).

    Article  ADS  Google Scholar 

  50. K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys, 87, No. 1, 295 (2000.

  51. A. Armstrong, G. Thaler, and D. D. Koleske, J. Appl. Phys, 105, 043712 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Brudnyi.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp.121–126, November, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brudnyi, V.N. Gallium Nitride: Charge Neutrality Level and Interfaces. Russ Phys J 58, 1613–1618 (2016). https://doi.org/10.1007/s11182-016-0691-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0691-1

Keywords

Navigation