Skip to main content
Log in

The Poole–Frenkel effect in a dielectric under nanosecond irradiation by an electron beam with moderate or high current density

  • Physics of Semiconductors and Dielectrics
  • Published:
Russian Physics Journal Aims and scope

Processes of electron trapping and detrapping determine in many respects intense processes arising in dielectric and delayed by 1–100 ns from the irradiation pulse of a high-power electron beam, such as electron emission, electric discharge in the bulk of the dielectric, flashover, and electric breakdown. A model of charged donor center ionization in a dielectric exposed to a strong electric field is constructed. The model takes into account 1) the energy spectrum of the charged donor center in the dielectric, 2) the semiclassical state density in the donor center, 3) spontaneous emission of phonons by the electron localized in the donor center, 4) increase in the kinetic energy of the electron (heating) in the external electric field, 5) electron tunneling through a potential barrier and its reflection from the barrier depending on the external field intensity, and 6) thermal fluctuations of energy of the electron localized in the donor center. The probability of charged donor center ionization in the dielectric per unit time is calculated. In weak fields, the field dependence of the ionization probability almost coincides with that for the Poole–Frenkel theory. In strong fields, the contribution of electron heating to the external electric field is the deciding factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Oswald, Jr., IEEE Trans. Nucl. Sci., NS13, 63–69 (1966).

    ADS  Google Scholar 

  2. D. I. Vaisburd and I. N.Balychev, Pis’ma Zh. Eksp. Teor. Fiz., 15, No. 9, 537–540 (1972).

    Google Scholar 

  3. D. I. Vaisburd, B. N.Semin, É. G. Tavanov, et al., High-energy Electronics of a Solid Body [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  4. D. I. Vaisburd and K. E. Evdokimov, Phys. Status Solidi, C2, No. 1, 216–222 (2005).

    ADS  Google Scholar 

  5. A. G. Vaisburd and D. I. Vaisburd, Int. J. Radiat. Appl. Instrum., D20, No. 2, 315 (1992).

    MathSciNet  Google Scholar 

  6. D. I. Vaisburd and K. E. Evdokimov, Russ. Phys. J., No. 11, 15–22 (2004).

  7. D. I. Vaisburd and K. E. Evdokimov, in: Proc. 4th Int. Conf. on Electric Charges in Non-Conductive Materials, Tours (2001), 282–285.

  8. D. I. Vaisburd and E. G. Tavanov, Pis’ma Zh. Tekh. Fiz., 1, No. 11, 531–534 (1975).

    Google Scholar 

  9. V. V. Butkov and D. I. Vaisburd, Dokl. Ross. Akad. Nauk, 293, No. 3, 598–602 (1987).

    Google Scholar 

  10. N. F. Mott and E. A. Devis, Electronic Processes in Noncrystal Substances, Vol. 1 [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  11. Ya. I. Frenkel, Zh. Eksp. Teor. Fiz., 8, No. 12, 1292–1301 (1938).

    Google Scholar 

  12. V. N. Abakumov, V. I. Perel’, and I. N. Yassievich, Nonradiative Recombination in Semiconductors [in Russian], Saint Petersburg (1997).

  13. I. A. Parfianovich and E. E. Penzina, Electron Color Centers in Ionic Crystals [in Russian], East-Siberian Press, Irkutsk (1977).

    Google Scholar 

  14. K. V. Shalimova, Physics of Semiconductors [in Russian], Energoatomizdat, Moscow (1985).

    Google Scholar 

  15. G. Raunio and S. Ronaldson, Phys. Rev., B2, No. 6, 2098–2103 (1970).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Vaisburd.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 10–16, December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaisburd, D.I., Evdokimov, K.E. The Poole–Frenkel effect in a dielectric under nanosecond irradiation by an electron beam with moderate or high current density. Russ Phys J 51, 1255–1261 (2008). https://doi.org/10.1007/s11182-009-9174-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-009-9174-y

Keywords

Navigation